Vol. 82
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-04-24
On the Target Classification through Wavelet-Compressed Scattered Ultrawide-Band Electric Field Data and ROC Analysis
By
Progress In Electromagnetics Research, Vol. 82, 419-431, 2008
Abstract
This paper's aim is to classify cylindrical targets from their ultrawide-band radar returns. To calculate the radar returns, image technique formulation is used to obtain the Electric Field Integral Equations (EFIEs). Then, the EFIEs are solved numerically by Method of Moment (MoM). Because of wide frequency range of the ultrawide-band radar signal, the database to be used for target classification becomes very large. To deal with this problem and to provide robustness, wavelet transform is utilized. Application of wavelet transform significantly reduces the size of the database. The coefficients obtained by wavelet transform are used as the inputs of the artificial neural networks (ANNs). Then, the actual performances of the networks are investigated by Receiver Operating Characteristic (ROC) analysis.
Citation
Senem Makal, Ahmet Kizilay, and Lutfiye Durak, "On the Target Classification through Wavelet-Compressed Scattered Ultrawide-Band Electric Field Data and ROC Analysis," Progress In Electromagnetics Research, Vol. 82, 419-431, 2008.
doi:10.2528/PIER08040903
References

1. Yang, Y., "MIMO radar waveform design based on mutual information and minimum mean-square error estimation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 1, 330-343, 2007.
doi:10.1109/TAES.2007.357137

2. Park, S. E., "Unsupervised classification of scattering mechanisms in polarimetric SAR data using fuzzy logic in entropy and alpha plane," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 8, 2652-2664, 2007.
doi:10.1109/TGRS.2007.897691

3. Turhan, G., "Real time electromagnetic target classification using a novel feature extraction technique with PCA-based fusion," IEEE Transaction on Antennas and Propagation, Vol. 53, No. 2, 766-776, 2005.
doi:10.1109/TAP.2004.841326

4. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-d buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

5. Xue, W. and X.-W. Sun, "Target detection of vehicle volume detecting radar based on Wigner-Hough transform," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1513-1523, 2007.

6. Li, Y.-L., J.-Y. Huang, and M.-J. Wang, "Investigation of electromagnetic interaction between a spherical target and a conducting plane," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1703-1715, 2007.

7. Alivizatos, E. G., M. N. Petsios, and N. K. Uzunoglu, "Towards a range-doppler UHF multistatic radar for the detection of noncooperative targets with low RCS," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 2015-2031, 2005.
doi:10.1163/156939305775570512

8. Lee, K.-C. and J.-S. Ou, "Radar target recognition by using linear discriminant algorithm on angular-diversity RCS," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2033-2048, 2007.
doi:10.1163/156939307783152902

9. Zainud-Deen, S. H., M. E. Badr, E. El-Deen, K. H. Awadalla, and H. A. Sharshar, "Microstrip antenna with corrugated ground plane surface as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 2, 259-278, 2008.
doi:10.2528/PIERB07112702

10. Ozdemir, C., S. Demirci, and E. Yigit, "Practical algorithms to focus B-scan GPR images: theory and application to real data," Progress In Electromagnetics Research B, Vol. 6, 109-122, 2008.

11. Azimi-Sadjadi, M. R., D. Yao, Q. Huang, and G. J. Dobeck, "Underwater target classification using wavelet packets and neural networks," IEEE Trans. on Neural Networks, Vol. 11, No. 3, 784-794, 2000.
doi:10.1109/72.846748

12. Ak, U., T. Gnel, and I. Erer, "A wavelet-based radial-basis function neural networkapproac h to the conducting cylinders," Microwave and Optical Technology Letters, Vol. 41, No. 6, 506-511, 2004.
doi:10.1002/mop.20186

13. Hassani, H. R. and M. Jahanbakht, "Method of moment analysis of finite phased array of aperture coupled circular microstrip patch antennas," Progress In Electromagnetics Research B, Vol. 4, 197-210, 2008.

14. Kizilay, A. and S. Makal, "A neural network solution for identification and classification of cylindrical targets above perfectly conducting flat surfaces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2147-2156, 2007.
doi:10.1163/156939307783152759

15. Kizilay, A., A perturbation method for transient multipath analysis of electromagnetic scattering from targets above periodic surfaces, Ph.D. dissertation, Michigan State University, 2000.

16. Strang, G. and T. Nyugen, Wavelets and Filterbanks, Wellesley-Cambridge Press, 1997.

17. Arivazhagan, S., W. S. L. Jebarani, and G. Kumaran, "Performance comparison of discrete wavelet transform and dual tree discrete wavelet transform for automatic airborne target detection," International Conference on Computational Intelligence and Multimedia Applications, 495-500, 2007.

18. Zhang, R., G. McAllister, B. Scotney, S. McClean, and G. Houston, "Combining wavelet analysis and Bayesian networks for the classification of auditory brainstem response," IEEE Transactions on Information Technology in Biomedicine, Vol. 10, No. 3, 458-467, 2006.
doi:10.1109/TITB.2005.863865

19. Bors, A. G. and M. Gabbouj, "Neural networks and radial basis function neural networkfor pattern classification," Digital Signal Processing: A Review Journal, Vol. 4, No. 3, 173-188, 1994.
doi:10.1006/dspr.1994.1016

20. Zainud-Deen, S. H., H. A. Malhat, K. H. Awadalla, and E. S. El-Hadad, "Direction of arrival and state of polarization estimation using radial basis function neural network(RBFNN)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
doi:10.2528/PIERB07111801

21. Mohamed, M. D. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1101-1114, 2006.
doi:10.1163/156939306776930240

22. Park, J. and W. I. Sandberg, "Universal approximation using radial basis function networks," Neural Computation, Vol. 3, No. 2, 246-257, 1991.
doi:10.1162/neco.1991.3.2.246

23. Mohamed, M. D. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Wave and Applications, Vol. 20, No. 8, 1101-1114, 2006.
doi:10.1163/156939306776930240

24. Rutkowski, L., "Generalized regression neural networks in time-varying environment," IEEE Transactions on Neural Networks, Vol. 15, No. 3, 576-596, 2004.
doi:10.1109/TNN.2004.826127

25. Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan College Publishing, 1994.

26. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1161-1174, 2006.
doi:10.1163/156939306777442917

27. Schalkoff, R. J., Artificial Neural Networks, McGraw-Hill Inc., 1997.

28. Sboner, A., "Multiple classifier system for early melanoma diagnosis," AI in Medicine, Vol. 27, No. 1, 29-44, 2003.

29. Wang, S., C. I. Chang, S. C. Yang, G. C. Hsu, H. H. Hsu, P. C. Chung, S. M. Gua, and S. K. Lee, "3D ROC analysis for medical imaging diagnosis," IEEE International Conference of the Engineering in Medicine and Biology, 7545-7548, 2005.