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Abstract—This paper’s aim is to classify cylindrical targets from
their ultrawide-band radar returns. To calculate the radar returns,
image technique formulation is used to obtain the Electric Field
Integral Equations (EFIEs). Then, the EFIEs are solved numerically
by Method of Moment (MoM). Because of wide frequency range of
the ultrawide-band radar signal, the database to be used for target
classification becomes very large. To deal with this problem and
to provide robustness, wavelet transform is utilized. Application of
wavelet transform significantly reduces the size of the database. The
coefficients obtained by wavelet transform are used as the inputs of
the artificial neural networks (ANNs). Then, the actual performances
of the networks are investigated by Receiver Operating Characteristic
(ROC) analysis.

1. INTRODUCTION

Target identification from the radar scattering signatures is a
complicated task; therefore, alternative approaches have been
proposed, such as statistical models, fuzzy systems and artificial neural
network (ANN) [1, 10]. Although ANNs are computationally intensive,
they have become popular since late 80’s. The data reduction of
the ANN inputs makes the network simpler, decreases the training
time and the results usually become more robust. Various methods
are applied to reduce the size of the ANN inputs. Wavelet packet
decomposition for feature selection is proposed in [11] to obtain the
coefficients to be used as ANN inputs for classifying underwater mines
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and mine-like targets from the acoustic backscattered signals. A new
approach of a wavelet-based radial basis function neural network is
used to estimate the locations and radii of conducting cylindrical
scatterers in [12].

This paper focuses the problem of cylindrical target classification.
A cylindrical target with a radius of rt is located at a distance ht from
the perfectly conducting (PEC) flat surface. The incident field Ei is a
plane electromagnetic wave illuminating the target with the incidence
angle of φi as shown in Fig. 1. Here, the location of the cylinder is
denoted by the coordinates (x0, y0) on the xy-plane.
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Figure 1. The geometry of the problem for a cylinder above an infinite
flat surface.

For this scattering problem, the PEC flat surface is chosen to be
infinitely long to avoid direct and indirect reflections from edges. The
method of images can be employed to replace the infinite flat surface
with images of the incident field and the cylinder. MoM [13] is used
to solve the EFIEs to obtain the induced current on the target. After
these derivations, the scattered electric field is expressed as,
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where φs is the scattering angle, k0 is the free-space wave number, �r
is the position vector, η0 is the intrinsic impedance of free space, Ln is
the surface segment where the current is defined, and NT is the number
of the points on the cylinder [14].

In our previous work in [15], narrow band signals have been
employed for target identification. The reel and imaginary parts of
the field of each frequency band formed some inputs of the ANNs.
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Contrary to the previous work, here the whole signal is applied as the
inputs of the ANNs after compressing by wavelet transform.

Fig. 2 presents the block diagram of the inputs and outputs of the
method of images and EFIE-MoM solution. Frequency domain results
are obtained by sweeping the frequency from 1 GHz to 30 GHz range
with a step size of 0.04 GHz, resulting in 726 frequency data points.
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Figure 2. The block diagram of the inputs and outputs of the method
of images and EFIE-MoM solution.

2. WAVELET TRANSFORM BASED SCATTERED
ELECTRIC FIELD DATA COMPRESSION

The wavelet transform analyzes a signal by decomposing it into
approximation and detail parts by filter banks [16]. Fig. 3 demonstrates
the scheme of an analysis bank. At the first level, it employs a low-pass
filter with transfer function H0, giving approximation coefficients and
a high-pass filter with transfer function H1 giving detail coefficients.
At each level, filtering process is followed by a decimation by 2 that
restricts the output data size.
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Figure 3. The filter bank.
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Then, the low and high-pass filters are applied subsequently
and output of the low-pass filter is down sampled by a factor of 2
to resolve high and low-frequency components [17]. In this work,
low-frequency components of the signal are analyzed. Three-level
Daubechies (db10) wavelet transform is used. Fig. 4 presents the low-
frequency components of the signal at each level. Apparently, as the
level order increases, more and more detail information is eliminated.

(a) (b)

(c) (d)

Figure 4. (a) Original signal, (b) first level, (c) second level, and (d)
third level decomposition.

In the simulations, the variation of the scattered field is observed
and the most energetic part of the data is selected as the inputs of
the ANN. At the third level, this part corresponds to the coefficients
between 18-27th samples.

3. ANN APPLICATION OF THE COMPRESSED DATA

The total number of scattering field vectors belonging to the two
cylindrical targets is 34, where each data pair corresponds to a different
angle. One half of the database is used to train the network, the other
half is used to test the network.

Cross validation is applied to find the generalization ability of
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ANN classification. In the hold-out method, which is the simple kind
of cross validation, the data set is separated into two sets, called the
training set and the testing set. In the k-fold cross-validation, the
original sample is partitioned into k subset. A single subset is retained
as the testing data and the remaining k−1 subsets are used as training
data. Then, the k results of testing and training can be averaged to
produce a single estimation. Namely, in the k-fold cross validation, the
data set is divided into k subsets, and the holdout method is repeated
k times [18]. In this work, k is chosen as 2.

As seen in Fig. 5, wavelet coefficients are the inputs of the neural
networks and the total number of inputs is 10. Radial basis function
(RBF) neural network, general regression neural network (GRNN) and
multilayer perceptron (MLP) are used to classify the targets.
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Figure 5. The block diagram of the classifier.

3.1. Radial Basis Function Network

RBF network is a two layer feed-forward neural network using radial
basis functions as shown in Fig. 6. Such a network is characterized by
a set of inputs and a set of outputs. In between the inputs and outputs
there is a layer of processing units called hidden units. Each of them
implements a radial basis function. The way in which the network is
used for data modeling is different when approximating time-series and
in pattern classification [19, 21].

Given the inputs xj , the total input to the ith hidden neuron γi

is given by

γi =

√√√√ n∑
j=1

(
xj − cij

λij

)2

(2)
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Figure 6. RBF network structure.

for i = 1, 2, . . . . . . , N , where, N is the number of hidden neurons. The
output value of the ith hidden neuron is zij = σ(γi), where σ(γ) is a
radial basis function. The outputs of the RBF network are computed
from hidden neurons as

yk =
N∑

i=0

wkizki (3)

where, wki is the weight of the link between the ith neuron of the hidden
layer and the kth neuron of the output layer. Training parameters of
the RBF network consists of wki, cij , and λij for k = 1, 2, . . . , m,
i = 1, 2, . . . , N , and j = 1, 2, . . . , n [22, 23].

3.2. General Regression Neural Network

GRNN is a specific model of RBF network used for function
approximation problems. These networks have a high success rate on
approximation of continuous functions with an appropriate number
of hidden neurons. Repeated training is not required as in MLP.
As the dimensions of training data set are increased, the error rate
approximates to zero. Kernel approach which is a statistical method is
used in GRNN. According to this approach, a dependant y variable’s
regression to an independent x variable approximates to the most
probable value of y for a given x input and training set. GRNN
structure is seen in Fig. 7 and here, wmn is assigned as the weight
matrix of target value stated from the training set [24].
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Figure 7. GRNN network structure.

3.3. Multilayer Perceptron

Multilayer perceptrons (MLPs) are feed-forward neural networks
trained with the standard back propagation algorithm. They are
supervised networks, therefore they require a desired response to be
trained. They are widely used for pattern classification because they
learn how to transform input data into a desired response.

MLP network has a highly connected topology since every input
is connected to all nodes in the first hidden layer; every unit in the
hidden layers is connected to all nodes in the next layer. With one
or two hidden layers, they can approximate virtually any input-output
map. The basic MLP building unit is a simple model of artificial
neuron. This unit computes the weighted sum of the inputs plus the
threshold weight and passes this sum through the activation function.
The MLP structure is shown in Fig. 8, here, x1, x2, . . . , xD are the
inputs and y1, y2, . . . , yN are the outputs of ANN. The output units
in one layer form the inputs to the next layer. The weights of the
network are usually computed by training the network using the back
propagation algorithm [25, 26].

In these simulations, Levenberg-Marquardt algorithm (LMA) that
provides a numerical solution to the mathematical problem of a
function is used. It is the most popular curve-fitting algorithm and
it is used almost in any software that supplies a generic curve-fitting
tool [27].
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Figure 8. MLP network structure.

4. RESULTS OF THE ARTIFICIAL NEURAL
NETWORKS

All networks have ten inputs and one output that determines in which
cylinder scattering takes place. The spread value is chosen 0.9 for
RBF neural network and 0.1 for GRNN. MLP network has one hidden
layer of ten hidden units. Logarithmic sigmoid and saturating linear
functions are used in hidden and output layers; respectively. MLP
network is trained 50 epochs. The learning rate and the momentum
constant are chosen 0.9. The average classification accuracies of MLP,
RBF and GRNN are listed in Table 1. MLP has apparently the highest
success rate.

Table 1. Success rates of the networks for testing and training data
sets.

Success Rate (%)
Testing Training

RBF 79.41 97
GRNN 73.5 100
MLP 91.2 100
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5. ROC ANALYSIS

As testing and training rate are not enough to analyze the sensitivities
of the networks, ROC analysis is applied to find out the real
performances of the networks used to classify the data set.

ROC analysis is related in a direct and natural way to cost/benefit
analysis of diagnostic decision making. It is originated from signal
detection theory, as a model of how well a receiver is able to detect a
signal in the presence of noise. There are four possible outcomes from
a binary classifier. If the outcome from a prediction is p and the actual
value is also p, then it is called a true positive (TP); however if the
actual value is n, then it is said a false positive (FP). Conversely, a
true negative (TN) has occurred when both the prediction outcome and
the actual value are n, and false negative (FN) is when the prediction
outcome is n while the actual value is p [28]. In this work, p and n
are defined as first target and second target respectively as shown in
Table 2.

Table 2. ROC table.

Actual Value
Target A Target B

Predictions
Target A TP FP
Target B FN TN

The limitations of diagnostic “accuracy” as a measure of decision
performance require the introduction of concepts as the “sensitivity”
and “specificity” of a diagnostic test. The equations of these measures
can be expressed by (4) and (5) [29]:

Sensitivity =
TP

TP+FN
(4)

Specificity =
TN

TN+FP
(5)

The sensitivity and specificity values of MLP, RBF and GRNN are
demonstrated in Table 3. MLP has the highest values for both testing
and training. ROC curves of testing and training are shown in Fig. 9.
They demonstrate the relation between sensitivity and specificity. The
area under the curve is a measure of testing and training accuracies.
The closer to the left-hand border and then the top border of the ROC
space the curve follows, the more successful the network is. In this
work, MLP network has a better ROC curve than the other networks.
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Table 3. Sensitivities and specificities values of the networks.

Sensitivity Specificity

RBF
Testing 0.78 0.83
Training 1 0.95

GRNN
Testing 0.89 0.6
Training 1 0.1

MLP
Testing 1 0.83
Training 1 1

(a)

(b)

Figure 9. ROC curves of the networks for (a) testing and (b) training.



Progress In Electromagnetics Research, PIER 82, 2008 429

6. CONCLUSION

In this target classification analyses, the scattered electric field data at
different angles from two cylindrical targets are compressed by wavelet
transform. Therefore, the compressed inputs of the neural networks
are determined and a dataset is formed. RBF, GRNN and MLP
are investigated in this work. According to the testing and training
rates, the best classifier is the MLP. To support this result, sensitivity
and specificity values and the ROC curves are obtained and it is
observed that MLP is better than the other networks. Consequently,
classification of more targets is planned as a next step to this work by
applying MLPs.
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