Vol. 4
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-05-28
Fractal-Like Square Lattice of Air Holes
By
Progress In Electromagnetics Research Letters, Vol. 4, 9-16, 2008
Abstract
Fractal structures have been widely used in many fields of science, such as biology, physics and chemistry. In this article, we analyze the basic properties of a fractal-like square lattice of air holes, with most of the holes having a lattice constant of Λ while others are repeated with a lattice constant of 2Λ. We change the radii of these holes and analyze their effects on the bandgap regions and transmission properties. The analysis conducted here is based upon band diagrams and 2D Finite difference time-domain (FDTD) solution of the full-wave Maxwell's equations. We show that this structure provides flexibility in tuning the bandgap of the photonic crystal structure and we show the appearance of mini-bandgap regions along certain directions.
Citation
Haroldo Hattori, "Fractal-Like Square Lattice of Air Holes," Progress In Electromagnetics Research Letters, Vol. 4, 9-16, 2008.
doi:10.2528/PIERL08040705
References

1. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

2. Knight, J. C., T. A. Birks, P. St J. Russell, and D. M. Atkins, "Pure silica single-mode fiber with hexagonal photonic crystal," Optics Letters, Vol. 21, 1547-1549, 1996.
doi:10.1364/OL.21.001547

3. Schneider, V. M. and H. T. Hattori, "Dispersion characteristics of segmented optical fibers," Applied Optics, Vol. 44, 2391-2391, 2005.
doi:10.1364/AO.44.002391

4. Franco, M. A. R., E. C. S. Barreto, V. A. Serrao, F. Sircilli, and H. T. Hattori, "Analysis of highly birefringent photonic crystal fibers with squeezed rectangular lattices," Microwave and Optical Technology Letters, Vol. 50, 1083-1086, 2008.
doi:10.1002/mop.23297

5. Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, "Channel drop filters in photonic crystals," Optics Express, Vol. 3, 4-11, 1998.

6. Matsumoto, T. and T. Baba, "Photonic crystal k-vector super-prism," Journal of Lightwave Technology, Vol. 22, 917-922, 2004.
doi:10.1109/JLT.2004.824537

7. Chen, C., B. Miao, and D. Prather, "Tunable photonic crystal based on SOI," PIERS Online , Vol. 2, 574-578, 2007.
doi:10.2529/PIERS060907215746

8. Fan, S., S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, "Waveguide branches in photonic crystals," Journal of the Optical Society of America B, Vol. 18, 162-165, 2001.
doi:10.1364/JOSAB.18.000162

9. Tayeboun, F., R. Naoum, H. M. Tayeboun, H. T. Hattori, and F. Salah-Belkhodja, "Improved transmission waveguide bends in photonic crystal," Journal of Electromagnetic Waves and Applications, Vol. 19, 615-628, 2005.
doi:10.1163/1569393053305099

10. Dimitriev, V., "2D magnetic photonic crystals with square latticegroup theoretical standpoint," Progress In Electromagnetics, Vol. 68, 71-100, 2006.
doi:10.2528/PIER05061701

11. Hattori, H. T., V. M. Schneider, R. M. Cazo, and C. L. Barbosa, "Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures," Applied Optics, Vol. 44, 3069-3076, 2005.
doi:10.1364/AO.44.003069

12. Hattori, H. T., I. Mc Kerracher, H. H. Tan, and C. Jagadish, "Inplane coupling of light from InP-based photonic crystal band-edge lasers into single-mode waveguides ," IEEE Journal of Quantum Electronics, Vol. 43, 279-286, 2007.
doi:10.1109/JQE.2006.890402

13. Painter, O., R. K. Lee, A. Scherrer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science, Vol. 284, 1819-1821, 1999.
doi:10.1126/science.284.5421.1819

14. Ohnishi, D., T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Optics Express, Vol. 12, 1562-1568, 2004.
doi:10.1364/OPEX.12.001562

15. Barnsley, M., Fractals Everywhere, Academic, Boston, 1988.

16. Hattori, H. T., V. M. Schneider, C. L. Barbosa, and R. M. Cazo, "“Reflectivity spectra evolution in grating structures with fractionally organized gaps," Microwave and Optical Technology Letters, Vol. 29, 42-45, 2001.
doi:10.1002/mop.1077

17. Barbosa, C. L., R. M. Cazo, and H. T. Hattori, "Grating structures with symmetric fractionally organized gaps," Microwave and Optical Technology Letters, Vol. 31, 223-229, 2001.
doi:10.1002/mop.1403

18. Hattori, H. T., V. M. Schneider, and C. L. Barbosa, "Analysis of distributed-feedback lasers with fractionally organized gaps," Applied Optics, Vol. 46, 1283-1289, 2007.
doi:10.1364/AO.46.001283

19. Hattori, H. T., H. H. Tan, and C. Jagadish, "Analysis of optically pumped compact laterally coupled distributed feedback lasers with three symmetric defect regions," Journal of Applied Physics, Vol. 102, 083109 1-8, 2007.

20. Biswas, B. N., R. Ghatak, R. K. Mishra, and D. R. Poddar, "Characterization of a self-complementary Sierpinski Gasket microstrip antennas," PIERS Online , Vol. 2, 698-701, 2006.
doi:10.2529/PIERS060901153618

21. BandSolve 2.0 RSOFT design group, 1999.

22. Fullwave 7.0 RSOFT design group, 2007.