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Abstract—Fractal structures have been widely used in many fields
of science, such as biology, physics and chemistry. In this article, we
analyze the basic properties of a fractal-like square lattice of air holes,
with most of the holes having a lattice constant of Λ while others are
repeated with a lattice constant of 2Λ. We change the radii of these
holes and analyze their effects on the bandgap regions and transmission
properties.

The analysis conducted here is based upon band diagrams and
2D Finite difference time-domain (FDTD) solution of the full-wave
Maxwell’s equations. We show that this structure provides flexibility
in tuning the bandgap of the photonic crystal structure and we show
the appearance of mini-bandgap regions along certain directions.

1. INTRODUCTION

Photonic crystals, periodic structures of high index contrast, exhibit
the property of forbidding the propagation of light in a certain
wavelength range and in certain directions [1]. Photonic crystals offer
a unique opportunity to fabricate compact devices because of their
ability to confine light in small regions. Moreover, by introducing
defects, it becomes possible to create optical waveguides and cavities
in the microscale and nanoscale ranges. In fact, photonic crystals have
been used in many device applications such as optical fibers [2–4],
filters [5–7], waveguide bends [8, 9], magneto-optical devices [10] and
lasers [11–14].

“Fractals” is a word used to describe objects that are too irregu
ar to be ana yzed by conventional geometry. In other words, sets and
functions that are not smooth or regu ar enough compose fractals.
They can sometimes represent natura phenomena better than do
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conventiona geometric objects [15]. These special geometrical forms
have a so been applied to optica devices [16–19], eading to DFB asers
with improved performance [18, 19]. Also, fractals have been applied
to antennas to produce specially tailored radiation beams [20].

In this article, we combine fractals and photonic crystals and
analyze a fractal-like square lattice of air holes. Basically, we merge a
set of holes with radius r1 and lattice constant Λ with another set of
holes with radius r2 and lattice constant 2Λ. Without loss of generality,
it is assumed that r1 = 0.4Λ. We show that we can tailor the bandgap
by changing r2, even eliminating the bandgap regions for certain
values of r2. Also, min-bandgaps are created along certain directions.
Simulations are based upon commercial software: BandSolve to obtain
the band diagrams for these structures and Fullwave to provide Finite-
Difference Time-Domain Method for these structures.

2. BAND DIAGRAMS OF FRACTAL-LIKE SQUARE
LATTICES OF AIR HOLES (FLSL)

The modified square lattice of air holes is shown in Figure 1(a). It
consists of a square lattice of air holes with a radius r1 and lattice
constant Λ, surrounding another set of holes organized in a square
lattice of air holes with radius r2 and lattice constant 2Λ. The
elementary cell for this structure is shown in Figure 1(b).

(a) (b)
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Figure 1. (a) Fractal-like square lattice of air holes (b) Elementary
cell for this structure.

The propagating mode is assumed to be TE, with the main
magnetic field in the y-direction (perpendicular to the plane containing
the photonic crystal structure). The epitaxially layered structure
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Figure 2. Cross sectional view of the epi-layered structure.

Figure 3. Bandgap regions as a function of normalized radius2
(r2/Λ).

consists of a GaAs core region (thickness of 140 nm) surrounded by
air on top and an oxidized Al0.98Ga0.02As region on the bottom [17],
as shown in Figure 2. The thickness of the active region is h1 = 140 nm,
while the thickness of the oxidized region (before oxidation) is h2 =
450 nm. For TE modes, this epi-layered structure has an effective index
of 2.82.

By using commercial software (BandSolve) [18], we obtain the
band diagrams for these structures by solving the equation below,
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where ε(x, z) is the electric permittivity function, H is the total
magnetic field and λ is the free-space wavelength.

Figure 3 shows the bandgap regions as a function of the normalized
radius2 (r2/Λ). The normalized frequency is expressed in units of
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Λ/λ. If r2/Λ < 0.1, there is only one bandgap region. Between
0.1 < r2/Λ < 0.28, the structure presents no bandgap region and, for
0.28 < r2/Λ < 0.52, the structure presents two bandgap regions. It is
clear that, by changing r2/Λ, we can change the bandgap regions. The
argest bandgap region (bandgap extending over the argest frequency
range)occurs when r2 = 0.4Λ, i.e., when the FLSL collapses into a
simple square lattice of air holes.

It should be mentioned that these bandgap regions forbid the
propagation of light in a in-plane directions (ΓX, ΓM and XM
directions). There may be mini-bandgaps in certain directions (ΓX
direction, for example), as wil be commented ater. The superposition
of two photonic crysta s in the same structure can result in the
overlapping of the modes from the two photonic crysta s present in the
structure or creation of new modes which are generated by the coupling
of the modes in these structures. This may explain why certain va ues
of r2 result in no bandgap regions for the FLSL.

Figure 4. Band diagram for r1 = 0.4Λ and r2 = 0.3Λ.

Figure 4 shows a band diagram for r1 = 0.4Λ and r2 = 0.3Λ. It is
clear that there is a bandgap region between 0.302 < Λ/λ < 0.309 in all
in-plane directions. There are also “additional” mini-bandgaps along
certain directions (ΓX, ΓM or XM directions). For example, there are
mini-bandgaps at 0.1203 < Λ/λ < 0.1276 and 0.4304 < Λ/λ < 0.4364
along the ΓX direction.

3. FDTD SIMULATIONS OF FRACTAL-LIKE SQUARE
LATTICES OF AIR HOLES

In order to assess the in-plane transmission properties of the photonic
crystal structures, we employ two-dimensional finite-difference time-
domain (FDTD) methods. Commercial software (Fullwave from
RSOFT company [19]) is employed. Perfect absorbing layers are placed
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at the borders of the computation area. A Gaussian beam covering the
photonic crystal region is used as a source to assess the transmission
properties of the photonic crystals. A power detector is placed behind
the photonic crystal region to assess the transmission spectrum of
the photonic crystal structures. The spatial step size of the FDTD
simulations is about 40 nm, while the time step is chosen to provide
stable FDTD calculations. Without loss of generality, Λ = 300 nm,
which provides a bandgap close to λ = 1000 nm, which is the typical
operation wavelength of our devices. Light is launched along the ΓX
direction, i.e., along the +z direction (see Figure 5(a) for details).

(a) (b)

Figure 5. (a) Basic configuration to assess the transmission properties
of photonic crystals (b) Transmission of a square lattice of air holes.

Figure 5(b) shows the transmission spectrum of a square lattice
of air holes with r1 = r2 = 120 nm and Λ = 300 nm. There is a
bandgap region between 1075 nm and 1175 nm (the bandgap region
occurs when the transmission of light through the photonic crysta is
close to zero, i.e., light is not allowed to propagate in the photonic
crystal), corresponding to a bandgap in the region 0.26 < Λ/λ < 0.28.
The band diagrams indicated a bandgap in the region 0.317 < Λ/λ <
0.327. One major cause of discrepancies includes the finite number of
holes in the FDTD simulations (occupying an area of 6µm by 6µm,
approximately), while band diagrams assume an infinite structure.
Also, bandSolve the magnetic field is expanded into a set of plane
waves, while in FDTD simulations, the source has a finite spot-size
diameter (about 4µm). No mini-gaps were observed for this structure
in the ΓX direction.

Now, let us assume that r1 = 120 nm, r2 = 90 nm and Λ = 300 nm.
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Figure 6. Transmission of a fractal-like structure with r1 = 120 nm,
r2 = 90 nm and Λ = 300 nm.

The transmission along the ΓX direction is shown in Figure 6.
The bandgap region has shifted to 1050 nm < λ < 1150 nm and

it is also clear the presence of the mini-gaps along the ΓX directions.
These mini-gaps in certain directions may be an additional feature of
the FLSL. It should be mentioned that these mini-bandgaps occur for
lower wave engths (i.e., wavelengths lower than 1µm), mini-bandgaps
at longer wave engths were not noted with the FDTD simulations. At
longer wavelengths, the FLSL allows the transmission of light through
this structure, as can be clearly observed in Figure 6 (the structure is
in the valence band, where there are many modes that can propagate
in this structure).

FLSL gives an additional degree of freedom to control the
position of the bandgap regions and generate mini-bandgaps in certain
directions. These features may lead to new applications to optica
devices in the future.

4. CONCLUSIONS

In this article, we presented the basic properties of fractal-like square
lattices of air holes. We showed that the bandgap region can be tailored
in these structures and mini-bandgaps along certain directions (e.g.,
ΓX) appear in these structures.
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