Vol. 83
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-05-13
MRI Induced Heating of Deep Brain Stimulation Leads: Effect of the Air-Tissue Interface
By
Progress In Electromagnetics Research, Vol. 83, 81-91, 2008
Abstract
We have investigated the scattering of the Magnetic Resonance Imaging (MRI) radiofrequency (RF) field by implants for Deep Brain Stimulation (DBS) and the resultant heating of the tissue surrounding the DBS electrodes. The finite element method has been used to perform full 3-D realistic simulations. The near field has been computed for varying distances of the connecting portion of the lead from the air-tissue interface. Dissipated powers and induced temperature rise distributions have been obtained in the region surrounding the electrodes. It is shown that the near proximity of the air-tissue interface results in a reduction in the induced temperature rise.
Citation
Syed Mohsin, Noor Sheikh, and Usman Saeed, "MRI Induced Heating of Deep Brain Stimulation Leads: Effect of the Air-Tissue Interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi:10.2528/PIER08040504
References

1. Rezai, A. R., D. Finneli, J. A. Nyenhuis, G. Hrdlicka, J. Tkach, A. Sharan, P. Rugieri, et al. "Neurostimulation systems for deep brain stimulation: In vitro evaluation of magnetic resonance imaging-related heating at 1.5 Tesla," J Magn. Reson. Imaging, Vol. 15, No. 3, 241-250, 2002.
doi:10.1002/jmri.10069

2. Dormont, D., P. Cornu, B. Pidoux, et al. "Chronic thalamic stimulation with three-dimensional MR stereotactic guidance," Am. J. Neuroradiology, Vol. 18, No. 6, 1093-1097, 1997.

3. Nyenhuis, J. A., S. M. Park, et al. "MRI and implanted medical devices: Basic interactions with an emphasis on heating," IEEE Trans. Device and Materials Reliability, Vol. 5, No. 3, 467-480, 2005.
doi:10.1109/TDMR.2005.859033

4. Jin, J. M., J. Chen, W. C. Chew, et al. "Computation of electromagnetic fields for high-frequency magnetic resonance imaging applications," Phys. Med. Biol., Vol. 41, 2719-2738, 1996.
doi:10.1088/0031-9155/41/12/011

5. Nitz, W. R., A. Oppelt, W. Renz, et al. "On the heating of linear conductive structures as guide wires and catheters in interventional MRI," J. Magn. Reson. Imag., Vol. 13, No. 1, 105-114, 2001.
doi:10.1002/1522-2586(200101)13:1<105::AID-JMRI1016>3.0.CO;2-0

6. Nguyen, U. D., J. S. Brown, et al. "Numerical evaluation of heating of the human head due to magnetic resonance imaging," IEEE Trans. Biomed. Eng., Vol. 51, No. 8, 1301-1309, 2004.
doi:10.1109/TBME.2004.827559

7. King, R. W. P., B. S. Trembly, and J. W. Strohbehn, "The electromagnetic field of an insulated antenna in a conducting or dielectric medium," IEEE Trans. MTT, Vol. 31, No. 7, 574-583, 1983.
doi:10.1109/TMTT.1983.1131547

8. King, R. W. P., "Antennas in material media near boundaries with application to communication and geophysical exploration, Part I: The bare metal dipole," IEEE Trans. on Anten. and Prop., Vol. 34, No. 4, 483-489, 1986.
doi:10.1109/TAP.1986.1143848

9. King, R. W. P., "Antennas in material media near boundaries with application to communication and geophysical exploration, Part II: The terminated insulated antenna," IEEE Trans. on Anten. and Prop., Vol. 34, No. 4, 490-496, 1986.
doi:10.1109/TAP.1986.1143843

10. Atlamazoglou, P. E. and N. K. Uzunoglu, "Galerkin moment method for the analysis of an insulated antenna in a dissipative dielectric medium," IEEE Trans. MTT, Vol. 44, No. 7, 988-996, 1998.
doi:10.1109/22.701454

11. Park, S. M., R. Kamondetdacha, A. Amjad, and J. A. Nyenhuis, "MRI safety: RF induced heating on straight wires," IEEE Trans. Magn., Vol. 41, No. 10, 4197-4199, 2005.
doi:10.1109/TMAG.2005.854803

12. Volakis, J. L., A. Chatterjee, and L. C. Kempel, "Review of the finite-element method for three-dimensional electromagnetic scattering," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1422-1433, 1994.

13. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley and Sons, 2002.

14. Park, S. M., Ph.D. thesis, Purdue University, West Lafayette, IN, 2006.

15. Ibrahiem, A., C. Dale, W. Tabbara, and J. Wiart, "Analysis of the temperature increase linked to the power induced by RF source," Progress In Electromagnetics Research, Vol. 52, 23-46, 2005.
doi:10.2528/PIER04062501

16. Kuo, L.-C., Y.-C. Kan, and H.-R. Chuang, "Analusis of a 900/1800-Mhz dual-band gap loop antenna on a handset with proximate head and hand model," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 107-122, 2007.
doi:10.1163/156939307779391722

17. Khalatbari, S., D. Sardari, A. A. Mirzaee, and H. A. Sadafi, "Calculating SAR in two models of the human head exposed to mobile phones radiations at 900 and 1800 MHz," PIERS Online, Vol. 2, No. 1, 104-109, March 26 2006.
doi:10.2529/PIERS050905190653

18. Kouveliotis, K. and C. N. Capsalis, "Prediction of the SAR level induced in a dielectric sphere by a thin wire dipole antenna," Progress In Electromagnetics Research, Vol. 80, 321-336, 2008.
doi:10.2528/PIER07112804