Vol. 7
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-04-08
Numerical Analysis of Homojunction Gallium Arsenide Avalanche Photodiodes (GaAs -Apds)
By
Progress In Electromagnetics Research B, Vol. 7, 159-172, 2008
Abstract
In our earlier work we introduce a numerical analysis to investigate the excess noise and performance factor of double carrier multiplication homojunction avalanche photodiodes (APDs) considering the nonlocal nature of the ionization process. In this paper we investigate the gain,breakdo wn voltage and carrier injection breakdown probability of homojunction avalanche photodiode in the wide range of multiplication region width. Also in our calculations the effects of dead space has been considered. Our analyses based on the history dependent multiplication theory (HDMT) and width independent ionization coefficient.
Citation
Hossein Mokari, "Numerical Analysis of Homojunction Gallium Arsenide Avalanche Photodiodes (GaAs -Apds)," Progress In Electromagnetics Research B, Vol. 7, 159-172, 2008.
doi:10.2528/PIERB08032702
References

1. McIntyre, R. J., "Multiplication noise in uniform avalanche diodes," IEEE Trans. Electron Devices, Vol. 13, No. 1, 164-168, Jan. 1966.
doi:10.1109/T-ED.1966.15651

2. Kagawazadeh, K., "The distribution of gains in uniformly multiplying avalanche photodiodes: Theory," IEEE Trans. Electron Devices, Vol. 19, 703-713, June 1972.

3. Emmons, R. B., "Avalanche-photodiode frequency response," J. Appl. Phys., Vol. 38, No. 9, 3705-3714, 1967.
doi:10.1063/1.1710199

4. Campbell, J. C., S. Chandrasekhar, W. T. Tsang, G. J. Qua, and B. C. Johnson, "Multiplication noise of wide-bandwidth InP/InGaAsP/In-GaAs avalanche photodiodes," J. Lightwave Technol., Vol. 7, 473-477, Mar. 1989.
doi:10.1109/50.16883

5. Tarof, L. E., J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, "High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes," IEEE Photon. Technol. Lett., Vol. 5, 672-674, June 1993.
doi:10.1109/68.219706

6. Hu, C., K. A. Anselm, B. G. Streetman, and J. C. Campbell, "Noise characteristics of thin multiplication region GaAs avalanche photodiodes," Appl. Phys. Lett., Vol. 69, No. 24, 3734-3736, 1996.
doi:10.1063/1.117205

7. Ong, D. S., K. F. Li, G. J. Rees, G. M. Dunn, J. P. R. David, and P. N. Robson, "A Monte Carlo investigation of multiplication noise in thin p-i-n GaAs avalanche photodiodes," IEEE Trans. Electron Devices, Vol. 45, 1804-1810, Aug. 1998.
doi:10.1109/16.704382

8. Li, K. F., D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, and R. Grey, "Avalanche multiplication noise characteristics in thin GaAs p-i-n diodes," IEEE Trans. Electron Devices, Vol. 45, 2102-2107, Oct. 1998.
doi:10.1109/16.725242

9. Li, K. F., S. A. Plimmer, J. P. R. David, R. C. Tozer, G. J. Rees, P. N. Robson, C. C. Button, and J. C. Clark, "Low avalanche noise characteristics in thin InP p-i-n diodes with electron initiated multiplication," IEEE Photon. Technol. Lett., Vol. 11, 364-366, 1999.
doi:10.1109/68.748237

10. Lenox, C., P. Yuan, H. Nie, O. Baklenov, C. Hansing, J. C. Campbell, and B. G. Streetman, "Thin multiplication region InAlAs homojunction avalanche photodiodes," Appl. Phys. Lett., Vol. 73, 783-784, 1998.
doi:10.1063/1.122000

11. Lenox, C., H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, Jr., B. G. Streetman, and J. C. Campbell, "Resonant-cavity InGaAs/InAlAs avalanche photodiodes with gain-bandwidth-product of 290 GHz," IEEE Photon. Technol. Lett., Vol. 11, 1162-1164, Sept. 1999.
doi:10.1109/68.784238

12. Gonzalez, T., C. Gonzalez, J. Mateos, D. Pardo, L. Reggiani, O. M. Bulashenko, and J. M. Rubi, "Universality of the 1/3 shot-noise suppression factor in nondegenerate diffusive conductors," Phys. Rev. Lett., Vol. 80, No. 13, 2901-2904, 1998.
doi:10.1103/PhysRevLett.80.2901

13. Reklaitis, A. and L. Reggiani, "Monte Carlo study of shot noise suppression," J. Appl. Phys., Vol. 82, No. 6, 3161-3163, 1997.
doi:10.1063/1.366102

14. Starikov, E., P. Shiktorov, V. Gruzinskis, L. Varani, J. C. Vaissiere, J. P. Nougier, T. Gonzalez, J. Mateos, D. Pardo, and L. Reggiani, "Transfer impedance calculations of electronic noise in two-terminal semiconductor structures," J. Appl. Phys., Vol. 83, No. 4, 2052-2066, 1998.
doi:10.1063/1.366938

15. Marsland, J. S., "On the effect of ionization dead spaces on avalanche multiplication and noise for uniform electric field," J. Appl. Phys., Vol. 67, 1929-1933, 1990.
doi:10.1063/1.345596

16. Hayat, M. M., B. E. A. Saleh, and M. C. Teich, "Effect of dead space on gain and noise of double-carrier-multiplication avalanche photodiodes," IEEE Trans. Electron Devices, Vol. 39, 546-552, 1992.
doi:10.1109/16.123476

17. Hayat, M. M., W. L. Sargent, and B. E. A. Saleh, "Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes," IEEE J. Quantum Electron., Vol. 28, 1360-1365, 1992.
doi:10.1109/3.135278

18. Marsland, J. S., R. C. Woods, and C. A. Brownhill, "Lucky drift estimation of excess noise factor for conventional avalanche photodiodes including the dead space effect," IEEE Trans. Electron Devices, Vol. 39, 1129-1134, 1992.
doi:10.1109/16.129093

19. Okuto, Y. and C. R. Crowell, "Ionization coefficients in semiconductors: A nonlocal property," Phys. Rev. B, Vol. 10, 4284-4296, 1974.
doi:10.1103/PhysRevB.10.4284

20. Spinelli, A. and A. L. Lacaita, "Mean gain of avalanche photodiodes in a dead space model," IEEE Trans. Electron Devices, Vol. 43, 23-30, 1996.
doi:10.1109/16.477589

21. Shichijo, H. and K. Hess, "Band-structure-dep endent transport and impact ionization in GaAs," Phys. Rev. B, Vol. 23, 4197-4207, 1981.
doi:10.1103/PhysRevB.23.4197

22. Brennan, K. F., "Calculated electron and hole spatial ionization profiles in bulk GaAs and superlattice avalanche photodiodes," IEEE J. Quantum Electron., Vol. 24, 2001-2006, 1988.
doi:10.1109/3.8535

23. Sano, N. and A. Yoshii, "Impact-ionization theory consistent with a realistic band structure of silicon," Phys. Rev. B, Vol. 45, 4171-4180, 1992.
doi:10.1103/PhysRevB.45.4171

24. Bude, J. and K. Hess, "Thresholds of impact ionization in semiconductors," J. Appl. Phys., Vol. 72, 3554-3561, 1992.
doi:10.1063/1.351434

25. Chandramouli, V. and C. M. Maziar, "Monte Carlo analysis of bandstructure influence on impact ionization in semiconductors," Solid State Electron., Vol. 36, 285-290, 1993.
doi:10.1016/0038-1101(93)90152-G

26. Kamakura, Y., H. Mizuno, M. Yamaji, M. Morifuji, K. Tanighchi, C. Hamaguchi, T. Kunikiyo, and M. Takenaka, "Impact ionization model for full band Monte Carlo simulation," J. Appl. Phys., Vol. 75, 3500-3506, 1994.
doi:10.1063/1.356112

27. Dunn, G. M., G. J. Rees, J. P. R. David, S. A. Plimmer, and D. C. Herbert, "Monte Carlo simulation of impact ionization and current multiplication in short GaAs p in diodes," Semicond. Sci. Technol., Vol. 12, 111-120, 1997.
doi:10.1088/0268-1242/12/1/019

28. Ong, D. S., K. F. Li, G. J. Rees, J. P. R. David, and P. N. Robson, "A simple model to determine multiplication and noise in avalanche photodiodes," J. Appl. Phys., Vol. 83, 3426-3428, 1998.
doi:10.1063/1.367111

29. Spinelli, A., A. Pacelli, and A. L. Lacaita, "Dead space approximation for impact ionization in silicon," Appl. Phys. Lett., Vol. 68, 3707-3709, 1996.
doi:10.1063/1.117196

30. Yuan, P., K. A. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. G. Streetman, J. C. Campbell, and R. J. McIntyre, "A new look at impact ionization — Part II: Gain and noise in short avalanche photodiodes," IEEE Trans. Electron Devices, Vol. 46, 1632-1639, Aug. 1999.
doi:10.1109/16.777151

31. Plimmer, S. A., J. P. R. David, G. J. Rees, R. Grey, D. C. Herbert, D. R. Wright, and A. W. Higgs, "Impact ionization in thin AlxGa1-xAs (x = 0.15 and 0.30) P+ -I - N+ s," J. Appl. Phys., Vol. 82, No. 3, 1231-1235, 1997.
doi:10.1063/1.365940

32. Yuan, P., C. C. Hansing, K. A. Anselm, C. V. Lenox, H. Nie, A. L. Holmes Jr, B. G. Streetman, and J. C. Campbell, "Impactionization characteristics of III–V semiconductors for a wide range of multiplication region thicknesses," IEEE J. Quantum Electron., Vol. 36, 198-204, 2000.
doi:10.1109/3.823466

33. Saeid, M.-P., "Effect of change of multiplication region mole fraction on Characteristics of AlxGa1-xAs-APDs in the linear and Geiger," Progress In Electromagnetics Research B, Vol. 2, 73-82, 2008.

34. Mokari, H. and M. H. Seyedi, "Numerical analysis of homojunction avalanche photodiodes (APDs)," Progress In Electromagnetics Research C, 2008 (accepted for publication).

35. Hayat, M. M., W. L. Sargeant, and B. E. A. Saleh, "Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes," IEEE J. Quantum Electron., Vol. 28, 1360-1365, 1992.
doi:10.1109/3.135278

36. Hayat, M. M., U Sakolu, O.-H. Kwon, S. Wang, J. C. Campbell, B. E. A. Saleh, and M. C. Teich, "Breakdown probabilities for thin heterostructure avalanche photodiodes," IEEE J. Quantum Electron., Vol. 39, 179-185, 2003.
doi:10.1109/JQE.2002.806217

37. McIntyre, R. J., "A new look at impact ionization — Part I: A theory of gain,noise,breakdo wn probability,and frequency response," IEEE Trans. Electron Devices, Vol. 46, 1623-1631, 1999.
doi:10.1109/16.777150

38. Chen, Z.-H. and Q. Chu, "FDTD modeling of arbitrary linear lumped networks using piecewise linear recursive convolution technique," Progress In Electromagnetics Research, Vol. 73, 327-341, 2007.
doi:10.2528/PIER07042002

39. Hu, X.-J. and D.-B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902

40. Gong, Z. and G.-Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

41. Xiao, S., B.-Z. Wang, P. Du, and Z. Shao, "An enhanced FDTD model for complex lumped circuits," Progress In Electromagnetics Research, Vol. 76, 485-495, 2007.
doi:10.2528/PIER07073003

42. Hu, X.-J. and D.-B. Ge, "Time domain analysis of active transmission line using FDTD technique," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902

43. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1471-1484, 2006.

44. Zheng, H.-X., X.-Q. Sheng, and E. K.-N. Yung, "Computation of scattering from conducting bodies coated with chiral materials using conformal FDTD," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1761-1774, 2004.
doi:10.1163/1569393042954901

45. Zhang, Y., W. Ding, and C. H. Liang, "Study on the optimum virtual topology for MPI based parallel conformal FDTD algorithm on PC clusters," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1817-1831, 2005.
doi:10.1163/156939305775696856

46. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "A novel implementation of modified Maxwells equations in the periodic finite-difference time-domain method," Progress In Electromagnetics Research, Vol. 59, 85-100, 2006.
doi:10.2528/PIER05092601