1. McIntyre, R. J., "Multiplication noise in uniform avalanche diodes," IEEE Trans. Electron Devices, Vol. 13, No. 1, 164-168, Jan. 1966.
doi:10.1109/T-ED.1966.15651
2. Kagawazadeh, K., "The distribution of gains in uniformly multiplying avalanche photodiodes: Theory," IEEE Trans. Electron Devices, Vol. 19, 703-713, June 1972.
3. Emmons, R. B., "Avalanche-photodiode frequency response," J. Appl. Phys., Vol. 38, No. 9, 3705-3714, 1967.
doi:10.1063/1.1710199
4. Campbell, J. C., S. Chandrasekhar, W. T. Tsang, G. J. Qua, and B. C. Johnson, "Multiplication noise of wide-bandwidth InP/InGaAsP/In-GaAs avalanche photodiodes," J. Lightwave Technol., Vol. 7, 473-477, Mar. 1989.
doi:10.1109/50.16883
5. Tarof, L. E., J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, "High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes," IEEE Photon. Technol. Lett., Vol. 5, 672-674, June 1993.
doi:10.1109/68.219706
6. Hu, C., K. A. Anselm, B. G. Streetman, and J. C. Campbell, "Noise characteristics of thin multiplication region GaAs avalanche photodiodes," Appl. Phys. Lett., Vol. 69, No. 24, 3734-3736, 1996.
doi:10.1063/1.117205
7. Ong, D. S., K. F. Li, G. J. Rees, G. M. Dunn, J. P. R. David, and P. N. Robson, "A Monte Carlo investigation of multiplication noise in thin p-i-n GaAs avalanche photodiodes," IEEE Trans. Electron Devices, Vol. 45, 1804-1810, Aug. 1998.
doi:10.1109/16.704382
8. Li, K. F., D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, and R. Grey, "Avalanche multiplication noise characteristics in thin GaAs p-i-n diodes," IEEE Trans. Electron Devices, Vol. 45, 2102-2107, Oct. 1998.
doi:10.1109/16.725242
9. Li, K. F., S. A. Plimmer, J. P. R. David, R. C. Tozer, G. J. Rees, P. N. Robson, C. C. Button, and J. C. Clark, "Low avalanche noise characteristics in thin InP p-i-n diodes with electron initiated multiplication," IEEE Photon. Technol. Lett., Vol. 11, 364-366, 1999.
doi:10.1109/68.748237
10. Lenox, C., P. Yuan, H. Nie, O. Baklenov, C. Hansing, J. C. Campbell, and B. G. Streetman, "Thin multiplication region InAlAs homojunction avalanche photodiodes," Appl. Phys. Lett., Vol. 73, 783-784, 1998.
doi:10.1063/1.122000
11. Lenox, C., H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, Jr., B. G. Streetman, and J. C. Campbell, "Resonant-cavity InGaAs/InAlAs avalanche photodiodes with gain-bandwidth-product of 290 GHz," IEEE Photon. Technol. Lett., Vol. 11, 1162-1164, Sept. 1999.
doi:10.1109/68.784238
12. Gonzalez, T., C. Gonzalez, J. Mateos, D. Pardo, L. Reggiani, O. M. Bulashenko, and J. M. Rubi, "Universality of the 1/3 shot-noise suppression factor in nondegenerate diffusive conductors," Phys. Rev. Lett., Vol. 80, No. 13, 2901-2904, 1998.
doi:10.1103/PhysRevLett.80.2901
13. Reklaitis, A. and L. Reggiani, "Monte Carlo study of shot noise suppression," J. Appl. Phys., Vol. 82, No. 6, 3161-3163, 1997.
doi:10.1063/1.366102
14. Starikov, E., P. Shiktorov, V. Gruzinskis, L. Varani, J. C. Vaissiere, J. P. Nougier, T. Gonzalez, J. Mateos, D. Pardo, and L. Reggiani, "Transfer impedance calculations of electronic noise in two-terminal semiconductor structures," J. Appl. Phys., Vol. 83, No. 4, 2052-2066, 1998.
doi:10.1063/1.366938
15. Marsland, J. S., "On the effect of ionization dead spaces on avalanche multiplication and noise for uniform electric field," J. Appl. Phys., Vol. 67, 1929-1933, 1990.
doi:10.1063/1.345596
16. Hayat, M. M., B. E. A. Saleh, and M. C. Teich, "Effect of dead space on gain and noise of double-carrier-multiplication avalanche photodiodes," IEEE Trans. Electron Devices, Vol. 39, 546-552, 1992.
doi:10.1109/16.123476
17. Hayat, M. M., W. L. Sargent, and B. E. A. Saleh, "Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes," IEEE J. Quantum Electron., Vol. 28, 1360-1365, 1992.
doi:10.1109/3.135278
18. Marsland, J. S., R. C. Woods, and C. A. Brownhill, "Lucky drift estimation of excess noise factor for conventional avalanche photodiodes including the dead space effect," IEEE Trans. Electron Devices, Vol. 39, 1129-1134, 1992.
doi:10.1109/16.129093
19. Okuto, Y. and C. R. Crowell, "Ionization coefficients in semiconductors: A nonlocal property," Phys. Rev. B, Vol. 10, 4284-4296, 1974.
doi:10.1103/PhysRevB.10.4284
20. Spinelli, A. and A. L. Lacaita, "Mean gain of avalanche photodiodes in a dead space model," IEEE Trans. Electron Devices, Vol. 43, 23-30, 1996.
doi:10.1109/16.477589
21. Shichijo, H. and K. Hess, "Band-structure-dep endent transport and impact ionization in GaAs," Phys. Rev. B, Vol. 23, 4197-4207, 1981.
doi:10.1103/PhysRevB.23.4197
22. Brennan, K. F., "Calculated electron and hole spatial ionization profiles in bulk GaAs and superlattice avalanche photodiodes," IEEE J. Quantum Electron., Vol. 24, 2001-2006, 1988.
doi:10.1109/3.8535
23. Sano, N. and A. Yoshii, "Impact-ionization theory consistent with a realistic band structure of silicon," Phys. Rev. B, Vol. 45, 4171-4180, 1992.
doi:10.1103/PhysRevB.45.4171
24. Bude, J. and K. Hess, "Thresholds of impact ionization in semiconductors," J. Appl. Phys., Vol. 72, 3554-3561, 1992.
doi:10.1063/1.351434
25. Chandramouli, V. and C. M. Maziar, "Monte Carlo analysis of bandstructure influence on impact ionization in semiconductors," Solid State Electron., Vol. 36, 285-290, 1993.
doi:10.1016/0038-1101(93)90152-G
26. Kamakura, Y., H. Mizuno, M. Yamaji, M. Morifuji, K. Tanighchi, C. Hamaguchi, T. Kunikiyo, and M. Takenaka, "Impact ionization model for full band Monte Carlo simulation," J. Appl. Phys., Vol. 75, 3500-3506, 1994.
doi:10.1063/1.356112
27. Dunn, G. M., G. J. Rees, J. P. R. David, S. A. Plimmer, and D. C. Herbert, "Monte Carlo simulation of impact ionization and current multiplication in short GaAs p in diodes," Semicond. Sci. Technol., Vol. 12, 111-120, 1997.
doi:10.1088/0268-1242/12/1/019
28. Ong, D. S., K. F. Li, G. J. Rees, J. P. R. David, and P. N. Robson, "A simple model to determine multiplication and noise in avalanche photodiodes," J. Appl. Phys., Vol. 83, 3426-3428, 1998.
doi:10.1063/1.367111
29. Spinelli, A., A. Pacelli, and A. L. Lacaita, "Dead space approximation for impact ionization in silicon," Appl. Phys. Lett., Vol. 68, 3707-3709, 1996.
doi:10.1063/1.117196
30. Yuan, P., K. A. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. G. Streetman, J. C. Campbell, and R. J. McIntyre, "A new look at impact ionization — Part II: Gain and noise in short avalanche photodiodes," IEEE Trans. Electron Devices, Vol. 46, 1632-1639, Aug. 1999.
doi:10.1109/16.777151
31. Plimmer, S. A., J. P. R. David, G. J. Rees, R. Grey, D. C. Herbert, D. R. Wright, and A. W. Higgs, "Impact ionization in thin AlxGa1-xAs (x = 0.15 and 0.30) P+ -I - N+ s," J. Appl. Phys., Vol. 82, No. 3, 1231-1235, 1997.
doi:10.1063/1.365940
32. Yuan, P., C. C. Hansing, K. A. Anselm, C. V. Lenox, H. Nie, A. L. Holmes Jr, B. G. Streetman, and J. C. Campbell, "Impactionization characteristics of III–V semiconductors for a wide range of multiplication region thicknesses," IEEE J. Quantum Electron., Vol. 36, 198-204, 2000.
doi:10.1109/3.823466
33. Saeid, M.-P., "Effect of change of multiplication region mole fraction on Characteristics of AlxGa1-xAs-APDs in the linear and Geiger," Progress In Electromagnetics Research B, Vol. 2, 73-82, 2008.
34. Mokari, H. and M. H. Seyedi, "Numerical analysis of homojunction avalanche photodiodes (APDs)," Progress In Electromagnetics Research C, 2008 (accepted for publication).
35. Hayat, M. M., W. L. Sargeant, and B. E. A. Saleh, "Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes," IEEE J. Quantum Electron., Vol. 28, 1360-1365, 1992.
doi:10.1109/3.135278
36. Hayat, M. M., U Sakolu, O.-H. Kwon, S. Wang, J. C. Campbell, B. E. A. Saleh, and M. C. Teich, "Breakdown probabilities for thin heterostructure avalanche photodiodes," IEEE J. Quantum Electron., Vol. 39, 179-185, 2003.
doi:10.1109/JQE.2002.806217
37. McIntyre, R. J., "A new look at impact ionization — Part I: A theory of gain,noise,breakdo wn probability,and frequency response," IEEE Trans. Electron Devices, Vol. 46, 1623-1631, 1999.
doi:10.1109/16.777150
38. Chen, Z.-H. and Q. Chu, "FDTD modeling of arbitrary linear lumped networks using piecewise linear recursive convolution technique," Progress In Electromagnetics Research, Vol. 73, 327-341, 2007.
doi:10.2528/PIER07042002
39. Hu, X.-J. and D.-B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902
40. Gong, Z. and G.-Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301
41. Xiao, S., B.-Z. Wang, P. Du, and Z. Shao, "An enhanced FDTD model for complex lumped circuits," Progress In Electromagnetics Research, Vol. 76, 485-495, 2007.
doi:10.2528/PIER07073003
42. Hu, X.-J. and D.-B. Ge, "Time domain analysis of active transmission line using FDTD technique," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902
43. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1471-1484, 2006.
44. Zheng, H.-X., X.-Q. Sheng, and E. K.-N. Yung, "Computation of scattering from conducting bodies coated with chiral materials using conformal FDTD," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1761-1774, 2004.
doi:10.1163/1569393042954901
45. Zhang, Y., W. Ding, and C. H. Liang, "Study on the optimum virtual topology for MPI based parallel conformal FDTD algorithm on PC clusters," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1817-1831, 2005.
doi:10.1163/156939305775696856
46. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "A novel implementation of modified Maxwells equations in the periodic finite-difference time-domain method," Progress In Electromagnetics Research, Vol. 59, 85-100, 2006.
doi:10.2528/PIER05092601