Vol. 1
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-04-08
The Electromagnetic Ion-Cyclotron Instability in the Presence of a.C. Electric Field for Lorentzian Kappa
By
Progress In Electromagnetics Research M, Vol. 1, 207-217, 2008
Abstract
Electromagnetic ion cyclotron (EMIC) waves have been studied in the presence of AC electric field perpendicular to ambient magnetic field in the ionosphere with observed superthermal electrons. The presence of 4 eV-50 eV superthermal electrons have been recently seen by Indian SROSS-C2 satellite, Lorentzian Kappa distribution has been used to derive dispersion relation and growth rate using method of characteristics and kinetic approach. The free energy source like anisotropy in temperature, AC electric field and presence of superthermal electrons affect the growth rate. Lorentzian kappa distribution plays important role in giving the wide spectrum range of emitted frequencies.
Citation
Rama Pandey, R. Pandey, Ajay K. Srivastava, S. Karim, and Anonymous Hariom, "The Electromagnetic Ion-Cyclotron Instability in the Presence of a.C. Electric Field for Lorentzian Kappa," Progress In Electromagnetics Research M, Vol. 1, 207-217, 2008.
doi:10.2528/PIERM08032601
References

1. Dusenbury, P. B. and L. R. Lyons, The Physics of Auroral Arc Formation, 456, AGU Pub., Washington D.C., 1981.

2. Keating, J. G., F. J. Mullingan, D. B. Doyle, K. J. Winser, and M. Lockwood, "A statistical study of large field-aligned flows of thermal ions at high latitudes," Planet Space Sci., Vol. 38, 1187, 1990.
doi:10.1016/0032-0633(90)90026-M

3. Wahlund, J. E. and H. J. Openoorth, "Eiscat observations of strong ion outflows from F-region ionosphere during auroral activity: Preliminary results," Geophysics. Res. Lett., Vol. 16, 727, 1989.
doi:10.1029/GL016i007p00727

4. Yeh, H. C. and J. C. Foster, "Storm tide heavy ion out flow at mid-latitude," J. Geophysics. Res., Vol. 95, 7881, 1990.
doi:10.1029/JA095iA06p07881

5. Bearing, E. A., M. C. Kelley, and F. S. Mozer, J. Geophysics. Res., Vol. 80, 4612, 1975.
doi:10.1029/JA080i034p04612

6. Kelley, M. C., E. A. Bering, and F. S. Mozer, Phys. Fluids, Vol. 18, 1950, 1975.

7. Kintner, P. M., C. Micheal, and M. C. Kelley, J. Geophysics. Res, Vol. 88, 375, 1983.

8. Andersion, B. J., K. Takahashi, R. E. Erlandsion, and L. J. Zanetti, "PC 1 pulsations observed by AMPTE/CCE in the earths outer magnetosphere ," Geophysics. Res. Lett., Vol. 17, No. 11, 1983, 1990.

9. Kennel, C. F. and H. E. Petchek, "Limit on stably trapped particle fluxes," J. Geophysics. Res., Vol. 71, No. 1, 1966.

10. Ludlow, G. R., "Growth of obliquely propagating ion-cyclotron waves in the magnetosphere," J. Geophysics. Res., Vol. 94, 15385, 1989.
doi:10.1029/JA094iA11p15385

11. Ishida, I., S. Kokubun, and R. L. M. Pherron, "Sub storm effects on spectral structures of PC-1 waves at synchronous orbit," J. Geophysics. Res., Vol. 92, 143, 1987.
doi:10.1029/JA092iA01p00143

12. Wandzura, S. and F. V. Coroniti, "Non convective ion-cyclotron instability," Planet Space Sci., Vol. 23, 123, 1975.
doi:10.1016/0032-0633(75)90073-2

13. Roux, A., S. Perrant, J. L. Rauch, C. Devilledary, G. Kremser, A. Korth, and D. T. Young, "Wave-interactions near Ω+He observed on board GEOS-1 and 2, Generation of ion cyclotron waves and heating of He+ ions," J. Geophysics. Res., Vol. 87, 8174, 1982.
doi:10.1029/JA087iA10p08174

14. Horne, R. B. and R. M. Thorne, "On the preferred source location for convective amplification of ion-cyclotron waves," J. Geophysics. Res., Vol. 98, 9233, 1993.
doi:10.1029/92JA02972

15. Loto'aniu, T. M., R. M. Thorne, and B. J. Fraser, "Estimating relativistic electron pitch angle scattering rates using properties of the electromagnetic ion cyclotron wave spectrum ," J. Geophy. Res., Vol. 111, 11452, 2006.

16. Wygant, J. R., M. Bensadoum, and F. S. Mozer, "Electric field measurements at subcritical oblique bow shock crossings," J. Geophysics. Res., Vol. 92, 17109, 1987.

17. Lindqvist, P. A. and F. S. Mozer, "The average tangential electric field at the noon magnetopause," J. Geophysics. Res., Vol. 17, 137, 1990.

18. Perrant, S., R. Gendrin, P. Robert, A. Roux, C. Devilledary, and D. Jones, "ULF waves observed with magnetic and electric sensors on GEOS-1 ," Space Sci. Rev., Vol. 22, 347, 1978.

19. Heppner, J. P., N. C. Maynard, and T. L. Aggson, "Early results from ISEE-1 electric field measurements ," Space Science Rev., Vol. 22, 777, 1978.

20. Mozer, F. S., R. B. Torbert, U. V. Fahleson, C. G. Falthammar, A. Gonfalone, A. Pedersen, and C. T. Russel, "Electric field measurement in the solar wind bow shock, magnetosheath, magnetopause and magnetosphere," Space Sci. Rev., Vol. 22, 791, 1978.

21. Tiwari, M. S. and G. Rostoker, "Field aligned currents and auroral acceleration by non-linear MHD waves," Planet Space Sci., Vol. 32, 1497, 1984.
doi:10.1016/0032-0633(84)90016-3

22. Pandey, R. S., R. P. Pandey, A. K. Srivastava, and K. Dubey, "Analytical study of whistler mode instability with parallel a.c. field by Lorentzian kappa ," Indian Journal of Radio & Space Physics, Vol. 34, 98-105, 2005.