1. Bertoni, H. L., Radio Propagation for Modern Wireless Systems, Prentice Hall, 2000.
2. Honcharenko, W., H. L. Bertoni, and J. Dailing, "Mechanism governing propagation on single floors in modern office buildings," IEEE Trans. Antennas and Propagation, Vol. 41, No. 4, 496-504, 1992.
3. Chen, S. H. and S. K. Jeng, "An SBR/image approach for radio wave propagation in indoor environments with metallic furniture," IEEE Trans. Antennas Propagation, Vol. 45, No. 1, 98-106, 1997.
doi:10.1109/8.554246
4. Ghobadi, G., P. R. Shepherd, and S. R. Pennock, "2D ray-tracing model for indoor radio propagation at millimeter frequencies and the study of diversity techniques," IEE Proc. - Microw. Antennas Propagation, Vol. 145, No. 4, 349-353, 1998.
doi:10.1049/ip-map:19981913
5. Yang, C.-F., B.-C. Wu, and C.-J. Ko, "A ray-tracing method for modeling indoor wave propagation and penetration," IEEE Trans. Antennas Propagation, Vol. 46, No. 6, 907-919, 1998.
doi:10.1109/8.686780
6. Ji, Z., B.-H. Li, H.-X. Wang, H.-Y. Chen, and Y.-G. Zhou, "An improved ray-tracing propagation model for predicting path loss on single floors," Microw. and Optical Tech. Letters, Vol. 22, No. 1, 39-41, 1999.
doi:10.1002/(SICI)1098-2760(19990705)22:1<39::AID-MOP10>3.0.CO;2-O
7. Agelet, F. A., et al. "Efficient ray-tracing acceleration techniques for radio propagation modeling," IEEE Trans. on Vehicular Technology, Vol. 49, No. 6, 2089-2104, 2000.
doi:10.1109/25.901880
8. Wang, Y., S. Safavi-Naeini, and S. K. Chaudhuri, "A hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation," IEEE Trans. Antennas Propagation, Vol. 48, No. 5, 743-754, 2000.
doi:10.1109/8.855493
9. Athanasiadou, G. E. and A. R. Nix, "A novel 3-D indoor ray-tracing propagation model: The path generator and evaluation of narrow-band and wide-band predictions," IEEE Trans. Vehicular. Technology, Vol. 49, No. 4, 1152-1168, 2000.
doi:10.1109/25.875222
10. Remley, K. A., H. R. Anderson, and A. Weisshaar, "Improving the accuracy of ray-tracing techniques for indoor propagation modeling," IEEE Trans. Vehicular Technology, Vol. 49, No. 6, 2350-2358, 2000.
doi:10.1109/25.901903
11. De Adana, F. S., O. G. Blanco, I. G. Diego, J. P. Arriaga, and M. F. Catedra, "Propagation model based on ray tracing for the design of personal communication systems in indoor environments," IEEE Trans. Vehicular Technology, Vol. 49, No. 6, 2105-2112, 2000.
doi:10.1109/25.901882
12. Attiya, A. M. and E. El-Diwany, "A time domain incremental theory of diffraction: scattering of electromagnetic pulsed plane waves," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 205-207, 2004.
doi:10.1163/156939304323062077
13. Teh, C. H., F. Kung, and H. T. Chuah, "A path-corrected wall model for ray-tracing propagation modeling," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 207-214, 2006.
doi:10.1163/156939306775777288
14. Jin, K.-S., "Fast ray tracing sing a space-division algorithm for RCS prediction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 119-126, 2006.
doi:10.1163/156939306775777341
15. Wang, S., H. B. Lim, and E. P. Li, "An efficient ray-tracing method for analysis and design of electromagnetic shielded room systems," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 2059-2071, 2005.
doi:10.1163/156939305775570503
16. Chen, C. H., C.-L. Liu, C.-C. Chiu, and T.-M. Hu, "Ultra-wide band channel calculation by SBR/image techniques for indoor communication," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 41-51, 2006.
doi:10.1163/156939306775777387
17. Teh, C. H. and H. T. Chuah, "An improved image-based propagation model for indoor and outdoor communication channels," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 1, 31-50, 2003.
doi:10.1163/156939303766975335
18. Zaporozhets, A. A. and M. F. Levy, "Modeling of radiowave propagation in urban environment with parabolic equation method," Electron. Lett., Vol. 32, No. 17, 1615-1616, 1996.
doi:10.1049/el:19961060
19. Donohue, D. J. and J. R. Kuttler, "Propagation modeling over terrain using the parabolic wave equation," IEEE Trans. Antennas Propagation, Vol. 48, 260-277, 2000.
doi:10.1109/8.833076
20. Zelley, C. A. and C. C. Constantinou, "A three-dimensional parabolic equation applied to VHF/UHF propagation over irregular terrain," IEEE Trans. Antennas Propagation, Vol. 47, 1586-1596, 1999.
doi:10.1109/8.805904
21. Sevgi, L., F. Akleman, and L. B. Felsen, "Groundwave propagation modeling: Problem-matched analytic formulations and direct numerical techniques," IEEE Antennas Propagation Mag., Vol. 44, No. 1, 55-75, 2002.
doi:10.1109/74.997903
22. Janaswamy, R., "Path loss predictions in the presence of buildings on flat terrain: A 3-D vector parabolic equation approach," IEEE Trans. Antennas Propagation, Vol. 51, No. 8, 1716-1728, 2003.
doi:10.1109/TAP.2003.815415
23. Awadallah, R. S., J. Z. Gehman, J. R. Kuttler, and M. H. Newkirk, "Effects of lateral terrain variations on tropospheric radar propagation," IEEE Trans. Antennas Propagation, Vol. 53, No. 1, 420-434, 2005.
doi:10.1109/TAP.2004.840853
24. Oraizi, H. and N. Noori, "Least square solution of the 3-D vector parabolic equation," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1175-1187, 2006.
doi:10.1163/156939306777442935
25. Noori, N. and H. Oraizi, "Evaluation of MIMO channel capacity in indoor environments using vector parabolic equation method," Progress In Electromagnetics ResearchB, Vol. 4, 13-25, 2008.
26. Graglia, R. D., "The parabolic equation method for the high-frequency scattering from a convex perfectly conducting wedge with curved faces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 585-598, 2007.
doi:10.1163/156939307780667274
27. Theofilogiannakos, G. K., T. V. Yioultsis, and T. D. Xenos, "An efficient hybrid parabolic equation --- Integral equation method for the analysis of wave propagation in highly complex indoor communication environments," Wireless Personal Communications, Springer, Vol. 43, No. 2, 495-510, 2007.
doi:10.1007/s11277-007-9246-7
28. Hadley, G. R., "Wide-angle beam propagation using Pade approximant operators," Optics Letters, Vol. 17, No. 20, 1426-1428, 1992.
29. Hadley, G. R., "Multistep method for wide-angle beam propagation," Optics Letters, Vol. 17, No. 24, 1743-1745, 1992.
30. Sacks, Z. S., D. M. Kingsland, R. Lee, and J.-F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagation, Vol. 43, No. 12, 1460-1463, 1995.
doi:10.1109/8.477075
31. Jin, J., The Finite Element Method in Electromagnetics, Wiley, 2002.
32. Collin, R. E., Field Theory of Guided Waves, IEEE Press, 1990.
33. Hu, C. F., J. D. Xu, N. J. Li, and L. X. Zhang, "Indoor accurate RCS measurements techniques on UHF band," Progress In Electromagnetics Research, Vol. 81, 279-289, 2008.
doi:10.2528/PIER08011402
34. Amirhosseini, M. K., "Three types of walls for shielding enclosures," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 6, 827-838, 2005.
doi:10.1163/1569393054069109
35. Safaai-Jazi, A., S. M. Riad, A. Muqaibel, and A. Bayram, "Ultra-wideband propagation measurements and channel modeling; through-the-wall propagation and material characterization," DARPA NETEX Program, 2002.