Vol. 82
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-04-09
Experimental Validation of a Hybrid Wide-Angle Parabolic Equation - Integral Equation Technique for Modeling Wave Propagation in Indoor Wireless Communications
By
Progress In Electromagnetics Research, Vol. 82, 333-350, 2008
Abstract
A new full-wave Parabolic --- Integral Equation Method (PE-IEM) for the simulation of wave propagation in realistic, highly complex indoor communication environments is proposed, together with an extensive validation via measurements. The method is based on a wide-angle parabolic equation, further enhanced by an integral equation correction and is capable of providing good approximations of the electromagnetic fields and the received power, incorp orating all fundamental propagation mechanisms in a single simulation. For a rigorous validation, it has been applied in a complex twelve-room office space and compared with measurements at the two different frequencies of 1 GHz and 2.5 GHz. The accuracy of the approximation is within reasonably expected margins, while the method retains all the advantages of full wave methods and it also has moderate requirements of computational resources.
Citation
Giorgos Theofilogiannakos, Traianos V. Yioultsis, and Thomas Xenos, "Experimental Validation of a Hybrid Wide-Angle Parabolic Equation - Integral Equation Technique for Modeling Wave Propagation in Indoor Wireless Communications," Progress In Electromagnetics Research, Vol. 82, 333-350, 2008.
doi:10.2528/PIER08031903
References

1. Bertoni, H. L., Radio Propagation for Modern Wireless Systems, Prentice Hall, 2000.

2. Honcharenko, W., H. L. Bertoni, and J. Dailing, "Mechanism governing propagation on single floors in modern office buildings," IEEE Trans. Antennas and Propagation, Vol. 41, No. 4, 496-504, 1992.

3. Chen, S. H. and S. K. Jeng, "An SBR/image approach for radio wave propagation in indoor environments with metallic furniture," IEEE Trans. Antennas Propagation, Vol. 45, No. 1, 98-106, 1997.
doi:10.1109/8.554246

4. Ghobadi, G., P. R. Shepherd, and S. R. Pennock, "2D ray-tracing model for indoor radio propagation at millimeter frequencies and the study of diversity techniques," IEE Proc. - Microw. Antennas Propagation, Vol. 145, No. 4, 349-353, 1998.
doi:10.1049/ip-map:19981913

5. Yang, C.-F., B.-C. Wu, and C.-J. Ko, "A ray-tracing method for modeling indoor wave propagation and penetration," IEEE Trans. Antennas Propagation, Vol. 46, No. 6, 907-919, 1998.
doi:10.1109/8.686780

6. Ji, Z., B.-H. Li, H.-X. Wang, H.-Y. Chen, and Y.-G. Zhou, "An improved ray-tracing propagation model for predicting path loss on single floors," Microw. and Optical Tech. Letters, Vol. 22, No. 1, 39-41, 1999.
doi:10.1002/(SICI)1098-2760(19990705)22:1<39::AID-MOP10>3.0.CO;2-O

7. Agelet, F. A., et al. "Efficient ray-tracing acceleration techniques for radio propagation modeling," IEEE Trans. on Vehicular Technology, Vol. 49, No. 6, 2089-2104, 2000.
doi:10.1109/25.901880

8. Wang, Y., S. Safavi-Naeini, and S. K. Chaudhuri, "A hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation," IEEE Trans. Antennas Propagation, Vol. 48, No. 5, 743-754, 2000.
doi:10.1109/8.855493

9. Athanasiadou, G. E. and A. R. Nix, "A novel 3-D indoor ray-tracing propagation model: The path generator and evaluation of narrow-band and wide-band predictions," IEEE Trans. Vehicular. Technology, Vol. 49, No. 4, 1152-1168, 2000.
doi:10.1109/25.875222

10. Remley, K. A., H. R. Anderson, and A. Weisshaar, "Improving the accuracy of ray-tracing techniques for indoor propagation modeling," IEEE Trans. Vehicular Technology, Vol. 49, No. 6, 2350-2358, 2000.
doi:10.1109/25.901903

11. De Adana, F. S., O. G. Blanco, I. G. Diego, J. P. Arriaga, and M. F. Catedra, "Propagation model based on ray tracing for the design of personal communication systems in indoor environments," IEEE Trans. Vehicular Technology, Vol. 49, No. 6, 2105-2112, 2000.
doi:10.1109/25.901882

12. Attiya, A. M. and E. El-Diwany, "A time domain incremental theory of diffraction: scattering of electromagnetic pulsed plane waves," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 205-207, 2004.
doi:10.1163/156939304323062077

13. Teh, C. H., F. Kung, and H. T. Chuah, "A path-corrected wall model for ray-tracing propagation modeling," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 207-214, 2006.
doi:10.1163/156939306775777288

14. Jin, K.-S., "Fast ray tracing sing a space-division algorithm for RCS prediction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 119-126, 2006.
doi:10.1163/156939306775777341

15. Wang, S., H. B. Lim, and E. P. Li, "An efficient ray-tracing method for analysis and design of electromagnetic shielded room systems," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 2059-2071, 2005.
doi:10.1163/156939305775570503

16. Chen, C. H., C.-L. Liu, C.-C. Chiu, and T.-M. Hu, "Ultra-wide band channel calculation by SBR/image techniques for indoor communication," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 41-51, 2006.
doi:10.1163/156939306775777387

17. Teh, C. H. and H. T. Chuah, "An improved image-based propagation model for indoor and outdoor communication channels," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 1, 31-50, 2003.
doi:10.1163/156939303766975335

18. Zaporozhets, A. A. and M. F. Levy, "Modeling of radiowave propagation in urban environment with parabolic equation method," Electron. Lett., Vol. 32, No. 17, 1615-1616, 1996.
doi:10.1049/el:19961060

19. Donohue, D. J. and J. R. Kuttler, "Propagation modeling over terrain using the parabolic wave equation," IEEE Trans. Antennas Propagation, Vol. 48, 260-277, 2000.
doi:10.1109/8.833076

20. Zelley, C. A. and C. C. Constantinou, "A three-dimensional parabolic equation applied to VHF/UHF propagation over irregular terrain," IEEE Trans. Antennas Propagation, Vol. 47, 1586-1596, 1999.
doi:10.1109/8.805904

21. Sevgi, L., F. Akleman, and L. B. Felsen, "Groundwave propagation modeling: Problem-matched analytic formulations and direct numerical techniques," IEEE Antennas Propagation Mag., Vol. 44, No. 1, 55-75, 2002.
doi:10.1109/74.997903

22. Janaswamy, R., "Path loss predictions in the presence of buildings on flat terrain: A 3-D vector parabolic equation approach," IEEE Trans. Antennas Propagation, Vol. 51, No. 8, 1716-1728, 2003.
doi:10.1109/TAP.2003.815415

23. Awadallah, R. S., J. Z. Gehman, J. R. Kuttler, and M. H. Newkirk, "Effects of lateral terrain variations on tropospheric radar propagation," IEEE Trans. Antennas Propagation, Vol. 53, No. 1, 420-434, 2005.
doi:10.1109/TAP.2004.840853

24. Oraizi, H. and N. Noori, "Least square solution of the 3-D vector parabolic equation," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1175-1187, 2006.
doi:10.1163/156939306777442935

25. Noori, N. and H. Oraizi, "Evaluation of MIMO channel capacity in indoor environments using vector parabolic equation method," Progress In Electromagnetics ResearchB, Vol. 4, 13-25, 2008.

26. Graglia, R. D., "The parabolic equation method for the high-frequency scattering from a convex perfectly conducting wedge with curved faces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 585-598, 2007.
doi:10.1163/156939307780667274

27. Theofilogiannakos, G. K., T. V. Yioultsis, and T. D. Xenos, "An efficient hybrid parabolic equation --- Integral equation method for the analysis of wave propagation in highly complex indoor communication environments," Wireless Personal Communications, Springer, Vol. 43, No. 2, 495-510, 2007.
doi:10.1007/s11277-007-9246-7

28. Hadley, G. R., "Wide-angle beam propagation using Pade approximant operators," Optics Letters, Vol. 17, No. 20, 1426-1428, 1992.

29. Hadley, G. R., "Multistep method for wide-angle beam propagation," Optics Letters, Vol. 17, No. 24, 1743-1745, 1992.

30. Sacks, Z. S., D. M. Kingsland, R. Lee, and J.-F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagation, Vol. 43, No. 12, 1460-1463, 1995.
doi:10.1109/8.477075

31. Jin, J., The Finite Element Method in Electromagnetics, Wiley, 2002.

32. Collin, R. E., Field Theory of Guided Waves, IEEE Press, 1990.

33. Hu, C. F., J. D. Xu, N. J. Li, and L. X. Zhang, "Indoor accurate RCS measurements techniques on UHF band," Progress In Electromagnetics Research, Vol. 81, 279-289, 2008.
doi:10.2528/PIER08011402

34. Amirhosseini, M. K., "Three types of walls for shielding enclosures," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 6, 827-838, 2005.
doi:10.1163/1569393054069109

35. Safaai-Jazi, A., S. M. Riad, A. Muqaibel, and A. Bayram, "Ultra-wideband propagation measurements and channel modeling; through-the-wall propagation and material characterization," DARPA NETEX Program, 2002.