Vol. 2
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-04-08
On Enhancing the Accuracy of Evaluating Green's Functions for Multilayered Media in the Near-Field Region
By
Progress In Electromagnetics Research M, Vol. 2, 1-14, 2008
Abstract
The discrete complex image method stands as one of the most efficient techniques that is able to represent the Green's functions of multilayered structures accurately in the near- and intermediate-field regions. In order to extend the validity of the method to the far region, the surface waves are extracted. Although the extraction process yields accurate results in the intermediate and far-field regions, erroneous results are observed in the near-field region. In this paper, this problem is treated by extracting the contribution of an additional number of artificial poles. Using this scheme, the discrete complex image method can provide accurate representation of Green's functions in both the near- and far-field regions.
Citation
Alaa Abdelmageed, and Mourad Ibrahim, "On Enhancing the Accuracy of Evaluating Green's Functions for Multilayered Media in the Near-Field Region," Progress In Electromagnetics Research M, Vol. 2, 1-14, 2008.
doi:10.2528/PIERM08022505
References

1. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory," IEEE Trans. Antennas Propagat., Vol. 38, 335-344, 1990.
doi:10.1109/8.52240

2. Michalski, K. A., "Formulation of mixed-potential integral equations for arbitrarily shaped microstrip structures with uniaxial substrates," J. Electromagn. Waves Appl., Vol. 7, 799-817, 1993.
doi:10.1163/156939393X00101

3. Oijala, P. Y., M. Taskinen, and J. Sarvas, "Multilayered media Green's functions for MPIE with general electric and magnetic sources by the Hertz potential approach," Prog. in Electromag. Res., Vol. 33, 141-165, 2001.
doi:10.2528/PIER00120802

4. Mosig, J. R., "Integral equation technique," Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, T. Itoh (ed.), 133-213, Wiley, New York, 1989.

5. Fang, D. G., J. J. Yang, and G. Y. Delisle, "Discrete image theory for horizontal electric dipoles in a multilayered medium," IEE Proc., Pt. H, Vol. 135, 297-303, 1988.

6. Yang, J. J., Y. L. Chow, and D. G. Fang, "Discrete complex images of a three-dimensional dipole above and within a lossy ground," IEE Proc., Pt. H, Vol. 138, 319-326, 1991.

7. Chow, Y. L., J. J. Yang, D. G. Fang, and G. E. Howard, "A closed-form spatial Green's function for the thick microstrip substrate," IEEE Trans. Microwave Theory Tech., Vol. 39, 588-592, 1991.
doi:10.1109/22.75309

8. Marple, S. L., Digital Spectral Analysis with Applications, Ch. 11, Prentice-Hall, Englewood Cliffs, 1987.

9. Hua, Y. and T. K. Sarkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. Antennas Propagat., Vol. 37, 229-234, 1989.
doi:10.1109/8.18710

10. Chew, W. C., Waves and Fields in Inhomogeneous Media, Ch. 2, Van Nostrand Reinhold, 1990.

11. Hojjat, N., S. Safavi-Naeini, and Y. L. Chow, "Numerical computation of complex image Green's functions for multilayer dielectric media: Near-field zone and the interface region," IEE Proc. Microwaves, Antennas and Pr opagat., Vol. 145, 449-454, 1998.
doi:10.1049/ip-map:19982255

12. Ling, F. and J. M. Jin, "Discrete complex image method for Green's functions of general multilayer media," IEEE Microw. Guided Wave Lett., Vol. 10, 400-402, 2000.
doi:10.1109/75.877225

13. Abdelmageed, A. K. and A. Mohsen, "An accurate computation of Green's functions for multilayered media in the near-field region," Microwave & Opt. Technol. Lett., Vol. 29, 130-131, 2001.
doi:10.1002/mop.1106

14. Teo, S. A., S. T. Chew, and M. S. Leong, "Error analysis of the discrete complex image method and pole extraction," IEEE Trans. Microwave Theory Tech., Vol. 51, 406-413, 2003.
doi:10.1109/TMTT.2002.807834

15. Michalski, K. A., "On the scalar potential of a point charge associated with a time-harmonic dipole in a layered medium," IEEE Trans. Antennas Propagat., Vol. 35, 1299-1301, 1987.
doi:10.1109/TAP.1987.1144022

16. Boix, R. R., F. Mesa, and F. Medina, "Application of total least squares to the derivation of closed-form Green's functions for planar layered media," IEEE Trans. Microwave Theory Tech., Vol. 55, 268-280, 2007.
doi:10.1109/TMTT.2006.889336

17. Abramowitz, M. and I. Stegun (eds.), Handbook of Mathematical Functions, Ch. 9, Dover, 1970.