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Abstract—The discrete complex image method stands as one of the
most efficient techniques that is able to represent the Green’s functions
of multilayered structures accurately in the near- and intermediate-
field regions. In order to extend the validity of the method to the
far region, the surface waves are extracted. Although the extraction
process yields accurate results in the intermediate and far-field regions,
erroneous results are observed in the near-field region. In this paper,
this problem is treated by extracting the contribution of an additional
number of artificial poles. Using this scheme, the discrete complex
image method can provide accurate representation of Green’s functions
in both the near- and far-field regions.

1. INTRODUCTION

The integral equation (IE) has been used extensively as an efficient
and rigorous method for the electromagnetic analysis of various
multilayered structures; particularly for low and medium sizes. The
IE is formulated in terms of Green’s functions (GF) which have closed
form in the spectral domain [1–3]. The evaluation of the GF in
the spatial domain entails the solution of Sommerfeld integrals (SI).
These integrals have an oscillatory behavior contributed mainly by
the Bessel functions [4]. The presence of branch points and surface-
wave poles adds another constraint which makes the numerical solution
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of the SI very time consuming. Generally speaking, there is no an
analytic solution for the SI. The need of an efficient and fast method
to handle these integrals is augmented by the wide applications of
the multilayered structures (microwave integrated circuits, microstrip
antennas, geophysical prospecting, . . . etc). Many methods have been
proposed to handle these integrals. One of the most prominent and
widely accepted techniques is the discrete complex image method
(DCIM) [5–7]. In this method, the quasi-static and contribution of
surface-wave poles are extracted first. Hence, the spectral-domain GF
is split into three terms: the first term is the quasi-static component,
the second is the surface waves, and the third is the remainder part.
This remainder part is expanded into a finite series of exponential
functions through the use of Prony’s method [8] or generalized pencil-
of-function method (GPOF) [9]. To obtain a closed-form solution in
the spatial domain, the first and third terms are transformed through
the use of the Sommerfeld identity [10], while the second term is
transformed via the use of the residue theorem. The near-field region
is dominated by the first term and the far-field region is dominated by
the second term. The intermediate-field region is mainly contributed
by the complex images as expressed by the third term.

The extraction of surface waves has the advantage of extending
the validity of the DCIM to the far-field region. The contribution
of these surface waves is expressed in terms of Hankel functions.
However, the extraction process leads to errors in the near field due
to the singularity at the origin related to Hankel functions [11, 12].
To remedy this problem, the authors in [12] introduced a transition
point which divides the near- and far-field regions. Hence, the DCIM
is applied twice: one with surface-wave extraction which represents the
field accurately in the far-field region and the other without surface-
wave extraction which represents the field accurately in the near-field
region. Alternatively, Abdelmageed and Mohsen [13] have resolved this
problem by extracting an artificial pole in addition to each original
pole. In the near field, the singularity problem of the Hankel function
is removed as the singularity of the artificial pole annihilates the
singularity of the original pole. Thereby, the accuracy of the near-field
region is preserved. In the far field, the contribution of the artificial
pole is highly attenuated leaving only the contribution of the original
pole as desired. Teo et al. [14] handled the surface-wave extraction
problem adopting a similar approach. They extracted synthetic poles
in addition to each original pole. They showed that these synthetic
poles and the original one have a better decay rate (∼ 1/k8

ρ) in the
spectral domain resulting in good results in the near field.

In this work, we extend the approach adopted in [13]. The
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accuracy of the near field is enhanced by extracting more artificial
poles. In the spectral domain, the artificial poles and the original one
have a better decay rate (∼ 1/k8

ρ) compared with that of [13] (∼ 1/k4
ρ)

and similar with that achieved in [14]. In the spatial domain, the
surface-wave term has an excellent accuracy in the near field where
the singularity of the Hankel function is removed. In the far field, the
behavior of the surface-wave term is dominated by the original poles.

2. FORMULATION

A general multilayered medium is shown in Fig. 1. Each layer i is
characterized by a relative permittivity εri, a relative permeability µri,
and thickness hi. The bottom layer can be either a dielectric or PEC
which is the case illustrated in the figure. A horizontal electric dipole
(HED) is assumed to reside on the top layer.

Figure 1. A current source present in a multilayered medium.
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The electric field can be represented in terms of the mixed
potential integral equation (MPIE) as

E(r) = −jωA(r) −∇Φ(r) (1)

where A(r) and Φ(r) are the magnetic vector and scalar potentials,
respectively. They are defined by

A(r) =
∫

dr′ GA
(
r | r′) · J (

r′) (2)

Φ(r) =
∫

dr′ Gq
(
r | r′) ∇′ · J

(
r′) (3)

where GA is the vector potential dyadic Green’s function and Gq are
the scalar Green’s function, and where ∇′ operates on the primed
(source) coordinates. J(r′) denotes the electric current density of
the source. In this paper, the ejωt time convention is assumed and
suppressed.

The form of the Green’s functions of multilayered media is not
unique [15]. Different MPIE formulations have been developed. We
adopt here the so-called formulation C developed by Michalski and
Zheng [1]. For this formulation, GA can be expressed as

GA =




GA
xx 0 GA

xz

0 GA
yy GA

yz

GA
zx GA

zy GA
zz


 (4)

In the spectral domain, the components of the GA dyadic and Gq are
given in closed form [1]. In the spatial domain, they are expressed in
terms of SI. Without losing generality, we consider here the case of an
HED which is located in the top layer, as shown in Fig. 1. The typical
form of a Green’s function component (vector or scalar potential) in
the spatial domain can be expressed in terms of SI as

G
(
ρ; z | z′

)
=

1
4π

∫ ∞

−∞
dkρ kρ G̃

(
kρ; z | z′

)
H2

o (kρ�) (5)

where G̃(kρ; z | z′) is the spectral-domain counterpart of G(ρ; z | z′),
and H2

0 is the zeroth-order Hankel function of the second kind. r =
(ρ, φ, z) and r′ = (ρ′, φ′, z′) are the field and source points, respectively,
and � =| ρ − ρ′ |. If the field and source points are in the same layer
(top layer), (5) can be written as

G
(
ρ; z | z′

)
=

1
4π

∫ ∞

−∞
dkρ

kρ

j2kzo
F̃ (kρ) e−jkzo(z+z′) H2

0 (kρ�) (6)
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where kzo =
√

k2
o − k2

ρ, and ko is the wavenumber of the top layer.

F̃ (kρ) is a spectral function which depends on the physical parameters
of the multilayered medium. The first step before applying the DCIM
is to extract quasi-static and surface-wave terms [7]:

G
(
ρ; z | z′

)
= Gqs+Gsw+

1
4π

∫ ∞

−∞
dkρ

kρ

j2kzo
F̃r(kρ)e−jkzo(z+z′)H2

0 (kρ�)

(7)

where Gqs and Gsw are the quasi-static and surface-wave terms,
respectively. Their arguments are omitted for brevity. F̃r(kρ) is the
remainder function which is given as

F̃r(kρ) = F̃ (kρ) − F̃qs(kρ) − F̃sw(kρ) (8)

where F̃qs(kρ) and F̃sw(kρ) are the spectral-domain quasi-static and
surface-wave contributions, respectively. They are given as

F̃qs(kρ) = lim
kρ→∞

F̃ (kρ) (9)

F̃sw(kρ) =
Np∑
p=1

2kρpResp

k2
ρ − k2

ρp

j2kzo ejkzo(z+z′) (10)

Resp = lim
kρ→kρp

(kρ − kρp)

[
e−jkzo(z+z′)

j2kzo
F̃ (kρ)

]
(11)

where Np is the number of poles, kρp ’s are the surface-wave poles
located in the complex kρ-plane, and Resp’s are their corresponding
residues.

The quasi-static term (the first term in (7)) can be obtained
analytically using Sommerfeld identity [10]

e−jkr

4πr
=

1
4π

∫ ∞

−∞
dkρ

kρ

j2kz
e−jkzz H2

0 (kρ�) (12)

where kz =
√

k2 − k2
ρ and r =

√
�2 + z2. The surface-wave term (the

second term in (7)) can be evaluated using Cauchy’s residue theorem:

Gsw =
1
4π

(−2πj)
Np∑
p=1

Resp H2
0 (kρp�)kρp (13)
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The remainder function F̃r(kρ) can be approximated by a finite series
of complex exponentials using Prony’s method [8] or the GPOF [9].

F̃r(kρ) =
M∑
l=1

ale
−jkzobl (14)

Using this representation of F̃r(kρ), the third term in (7) can be
expressed in closed form via the Sommerfeld identity [7]. Thereby,
(7) can be written as

G
(
ρ; z | z′

)
= Gqs −

j

2

Np∑
p=1

Resp H2
0 (kρp�) kρp +

M∑
l=1

al
e−jkorl

4πrl
(15)

where

rl =
√

�2 + (z + z′ + bl)
2 (16)

Although this expression is valid in principle for all field regions, it
suffers from a certain anomaly in the near-field region. The surface-
wave term is represented in terms of Hankel functions. The presence
of these functions introduces a non-physical singularity when � →
0 [11, 12]. For z �= z′ (the source and field points are not in the
same horizontal plane), the quasi-static term is not singular as � → 0.
However, the Hankel functions have a logarithmic singularity at � = 0.
The complex images term can not compensate for the singular behavior
of the Hankel functions, as the spherical waves of the images fail to
represent the logarithmic singularity of these functions. This anomaly
has resulted in inaccurate results in the near-field region. However,
this problem is eliminated for the special case when z = z′ (the source
and field points are in the same horizontal plane). In this case, the
quasi-static term is singular at � = 0, and this singularity dominates
over the Hankel functions singularity [16].

The reason of this problem can be explained in the spectral
domain [14]. For large kρ, the surface-wave term given by (10) decays
at a rate of 1/k2

ρ while the complex images needed to represent the
remainder function (equation 14) have an exponential decay behavior
in the spectral domain. This results in the inability of the complex
images to represent the slow decay accurately.

In order to resolve the problem of Hankel function singularity
in the near field, we propose to extract a number of artificial poles.
Therefore, (10) is modified to include the contribution of additional
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three poles.

F̃sw(kρ) =
Np∑
p=1

Sp(kρ) j2kzo ejkzo(z+z′) (17)

Sp(kρ) =
2kρpResp

k2
ρ − k2

ρp

+ c1
2kρp1Resp1

k2
ρ − k2

ρp1

+ c2
2kρp2Resp2

k2
ρ − k2

ρp2

+ c3
2kρp3Resp3

k2
ρ − k2

ρp3

(18)

where ci’s are arbitrary constants. The first term belongs to the surface
waves extracted at the original pole kρp . kρpi ’s for i = 1, 2, 3 are
artificial poles, and Respi’s are their corresponding residues. The series
(18) can be more conveniently represented as

Sp(kρ) =
3∑

i=0

ci
2kρpiRespi

k2
ρ − k2

ρpi

(19)

where co = 1, kρpo = kρp and Respo = Resp. Choosing ci’s such that

ci kρpi Respi = di kρp Resp (20)

then series (19) can be recast into the form

Sp(kρ) = 2kρpResp

3∑
i=0

di
1

k2
ρ − k2

ρpi

(21)

where di’s are new arbitrary constants with do = 1. The values of di’s
and kρpi ’s for i = 1, 2, 3 are selected such that:

• In the spectral domain, the behavior of Sp(kρ) decays at a rate of
1/k8

ρ for large kρ.
• In the spatial domain, the behavior of Gsw(ρ) renders the true

surface-wave behavior in the far-field region, and at the same time
does not suffer the singularity problem in the near-field region
when � → 0.

With these two conditions kept in consideration, the values of di’s and
kρpi ’s are given explicitly as

do = 1, d1 = −1, d2 = −j

(
kρp

k′
ρp

)2

, d3 = j

(
kρp

k′
ρp

)2

(22)
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kρpo =kρp , kρp1 =e−jπ/2kρp , kρp2 =e−jπ/4k′
ρp

, kρp3 =e−j3π/4k′
ρp

(23)

where k′
ρp

= αkρp + β. The values of α and β are determined
numerically for best results. Using (22) and (23), one can easily verify
that Sp(kρ) decays with the rate of 1/k8

ρ for large kρ. Substituting for
Sp(kρ), (17) yields

F̃sw(kρ) =


 Np∑

p=1

2kρpResp

3∑
i=0

di
1

k2
ρ − k2

ρpi


 j2kzo ejkzo(z+z′) (24)

Using Cauchy’s residue theorem, the surface-wave term Gsw takes the
form

Gsw =
1
4π

(−2πj)
Np∑
p=1

Resp kρp

3∑
i=o

di H2
o (kρpi�) (25)

or more explicitly as

Gsw =− j

2

Np∑
p=1

Resp kρp

[
H2

o (kρp�) − H2
o (e−jπ/2kρp�)

−j

(
kρp

k′
ρp

)2

H2
o (e−jπ/4k′

ρp
�)+j

(
kρp

k′
ρp

)2

H2
o (e−j3π/4k′

ρp
�)


 (26)

Thus, for each physical pole occurrence the surface-wave term is
expressed in terms of a finite series of Hankel functions. The series has
four elements. The first element belongs to the surface waves of the
original pole, while the other elements belong to the contributions of
the artificial poles. Except for the first element, the complex argument
of the Hankel functions makes them decay very fast for large � retaining
only the contribution of the original pole (the first element). Therefore,

For large � : Gsw−→− j

2

Np∑
p=1

Resp kρpH
2
o (kρp�) (27)

which is the true behavior of surface waves for large �. This asserts that
the additional artificial poles do not affect the surface-wave behavior
in the far field. To investigate the behavior of (26) in the near field,
we use the small argument approximation of the Hankel functions [17]:
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H2
o (x) −→

x→0

2
jπ lnx. Thus,

Gsw −→
�→0

− 1
π

Np∑
p=1

Resp kρp

[
ln(kρp�) − ln

(
e−jπ/2kρp�

)

−j

(
kρp

k′
ρp

)2

ln
(
e−jπ/4k′

ρp
�
)

+ j

(
kρp

k′
ρp

)2

ln
(
e−j3π/4k′

ρp
�
)
 (28)

which simplifies to

Gsw −→
kρ→0

− j

2

Np∑
p=1

Respkρp


1 − j

(
kρp

k′
ρp

)2

 (29)

It is obvious that the log singularity of the Hankel function is
eliminated and the behavior of the surface-wave term is very smooth
in the near-field region.

3. NUMERICAL RESULTS

To demonstrate the accuracy of our proposed method, results are
presented for three- and four-layered media of the geometry shown
in Fig. 1. For the three-layered medium, layer 0: air, layer 1:
h1 = 1.0 mm, εr1 = 12.6, layer 2: PEC. For the four-layered medium,
layer 0: air, layer 1: h1 = 1.5 mm, εr1 = 2.1, layer 2: h2 = 0.75 mm,
εr2 = 12.6, layer 3: PEC. Results are checked for an HED located
at the interface between air and first layer, i.e., z′ = 0, and for an
observation point z = 1 mm. The results are validated using direct
numerical integration. For brevity, results of only scalar potential Gq

are presented. The magnitude of Gq for the three-layered medium are
shown in Figs. 2 and 3 for frequency f = 10, 15 GHz, respectively.
The corresponding results for the four-layered medium are shown in
Figs. 4 and 5. For these results, the Green’s functions are computed
using the DCIM for two different approaches. In the first approach, the
original poles of the Green’s functions are located and only the surface
waves of these original poles are extracted. In the second approach, our
proposed method is applied where the contributions of three artificial
poles in addition to each original pole are extracted. The values of
α and β in (26) are selected for best accuracy: α = 1.5, β = 0.5.
From Figs. 2–5, it is readily apparent that extracting only the original
surface waves leads to erroneous results in the near field. However,
using the proposed method where the contribution of additional three
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Figure 2. Magnitude of Gq of an HED in a three-layered medium.
Layer 0: air, layer 1: h1 = 1.0 mm, εr1 = 12.6, layer 2: PEC. z′ = 0,
z=1.0 mm and f =10 GHz. — : Numerical integration and ---- : DCIM
with surface-wave extraction. Marks correspond to results obtained by
the proposed method.

Figure 3. Magnitude of Gq of an HED in a three-layered medium.
Layer 0: air, layer 1: h1 = 1.0 mm, εr1 = 12.6, layer 2: PEC. z′ = 0,
z=1.0 mm and f =15 GHz. — : Numerical integration and ---- : DCIM
with surface-wave extraction. Marks correspond to results obtained by
the proposed method.
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Figure 4. Magnitude of Gq of an HED in a four-layered medium.
Layer 0: air, layer 1: h1 = 1.5 mm, εr1 = 2.1, layer 2: h2 = 0.75 mm,
εr2 = 12.6, layer 3: PEC. z′ = 0, z = 1.0 mm and f = 10 GHz. — :
Numerical integration and ---- : DCIM with surface-wave extraction.
Marks correspond to results obtained by the proposed method.

Figure 5. Magnitude of Gq of an HED in a four-layered medium.
Layer 0: air, layer 1: h1 = 1.5 mm, εr1 = 2.1, layer 2: h2 = 0.75 mm,
εr2 = 12.6, layer 3: PEC. z′ = 0, z = 1.0 mm and f = 15 GHz. — :
Numerical integration and ---- : DCIM with surface-wave extraction.
Marks correspond to results obtained by the proposed method.

artificial poles are extracted treats this problem and removes the
singularity problem which contaminates the results. Obviously, the
figures show an excellent agreement of the proposed method with the
exact numerical integration in the near-field region as well as other
field regions.

To demonstrate the enhanced accuracy achieved by extracting
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Figure 6. The error occurred in computing the magnitude of Gq of an
HED in a four-layered medium. Layer 0: air, layered 1: h1 = 1.5 mm,
εr1 = 2.1, layered 2: h2 = 0.75 mm, εr2 = 12.6, layered 3: PEC. z′ = 0,
z = 1.0 mm and f = 10 GHz. — : Three artificial poles, ---- : One
artificial pole.

Figure 7. The error occurred in computing the magnitude of Gq of an
HED in a four-layered medium. Layer 0: air, layered 1: h1 = 1.5 mm,
εr1 = 2.1, layered 2: h2 = 0.75 mm, εr2 = 12.6, layered 3: PEC. z′ = 0,
z = 1.0 mm and f = 15 GHz. — : Three artificial poles, ---- : One
artificial pole.
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three artificial poles, the error occurred in computing Green’s functions
is calculated using the direct numerical integration as the reference or
exact method. Figs. 6 and 7 show the percentage error in the near-field
region. The calculations are done for the four-layered medium for the
corresponding results shown in Figs. 4 and 5. The results are compared
with that of [13], where only one artificial pole is extracted. Observing
Figs. 6 and 7, it is evident that the error is much suppressed in the
present method. This makes the present method has a much better
performance in the near field than that of [13].

4. CONCLUSION

In this work, a new method is proposed for enhancing the accuracy
of evaluating Green’s functions using the DCIM in the near-field
region. Extracting surface waves is known to corrupt the calculated
results in the near field due to the singularity at the origin related
to Hankel functions. The proposed method handles this deficiency by
extracting additional three artificial poles. The new method removes
the singularity problem which caused the corruption of results in the
near-field region, and at the same time retains the original behavior
of the surface waves in the far-field region. The results of the new
method is compared with that of the direct numerical integration and
an excellent agreement is achieved in all field regions.
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