Vol. 3
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-04-10
Scalar Equations for Scattering by Rotationally Symmetric Radially Inhomogeneous Anisotropic Sphere
By
Progress In Electromagnetics Research Letters, Vol. 3, 179-186, 2008
Abstract
A set of scalar differential equations for treating scattering by rotationally symmetric radially inhomogeneous anisotropic sphere is presented. These equations may easily be treated by applying the integral equation method that has been developed. Besides a possible different expansion in a Neumann series is also discussed.
Citation
Gerassimos Kokkorakis, "Scalar Equations for Scattering by Rotationally Symmetric Radially Inhomogeneous Anisotropic Sphere," Progress In Electromagnetics Research Letters, Vol. 3, 179-186, 2008.
doi:10.2528/PIERL08022201
References

1. Monzon, J. C., "Three-dimensional field expansion in the most general rotationally symmetric anisotropic material: Application to scattering by a sphere," IEEE Trans. Antennas Propagat., Vol. 37, 728-735, June 1989.
doi:10.1109/8.29359

2. Cui, T. J., C. H. Liang, and W. Wiesbeck, "Closed-form solutions for one-dimensional inhomogeneous anisotropic medium in a special case — Part I: Direct scattering problem," IEEE Trans. Antennas Propagat., Vol. 45, 936-941, June 1997.
doi:10.1109/8.585740

3. Grzegorczyk, T. M., X. Chen, J. Pacheco, Jr., J. Chen, B.-I. Wu, and J. A. Kong, "Reflection coefficients and Goos-Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 83-113, 2005.
doi:10.2528/PIER04040901

4. Li, C., Q. Sui, and F. Li, "Complex guided wave solutions of grounded dielectric slab made of metamaterials," Progress In Electromagnetics Research, Vol. 51, 187-195, 2005.
doi:10.2528/PIER04011203

5. Sihvola, A., "Character of surface plasmons in layered spherical structures," Progress In Electromagnetics Research, Vol. 62, 317-331, 2006.
doi:10.2528/PIER06042801

6. Lindell, I. V., "The class of bi-anisotropie IB-media," Progress In Electromagnetics Research, Vol. 57, 1-18, 2006.
doi:10.2528/PIER05061302

7. Hussain, W., "Asymptotic analysis of a line source diffraction by a perfectly conducting half-plane in a bi-isotropic medium," Progress In Electromagnetics Research, Vol. 58, 271-283, 2006.
doi:10.2528/PIER05091204

8. Li, K. and Y.-L. Lu, "Exact formulas for the lateral electromagnetic pulses from a horizontal electric dipole on the boundary between a isotropic medium and one-dimensionally anisotropic medium," Progress In Electromagnetics Research, Vol. 60, 43-83, 2006.
doi:10.2528/PIER05110402

9. Eroglu, A. and J. K. Lee, "Wave propagation and dispersion characteristics for a nonreciprocal electrically gyrotropic medium," Progress In Electromagnetics Research, Vol. 62, 237-260, 2006.
doi:10.2528/PIER06040901

10. Liu, S.-H., C.-H. Liang, W. Ding, L. Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2007.
doi:10.2528/PIER07071905

11. Eroglu, A. and J. K. Lee, "Simplified formulation of dyadic Green's functions and their duality relations for general anisotropic media," Progress In Electromagnetics Research, Vol. 77, 391-408, 2007.
doi:10.2528/PIER07082401

12. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancemen t of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

13. Ding, W., L. Chen, and C.-H. Liang, "Numerical study of Goos-Hanchen shift on the surface of anisotropic left-handed materials," Progress In Electromagnetics Research B, Vol. 2, 151-164, 2008.
doi:10.2528/PIERB07111403

14. Tuz, V. R., "Three-dimensional Gaussian beam scattering from a periodic sequence of bi-isotropic and material layers," Progress In Electromagnetics Research B, Vol. 7, 53-73, 2008.
doi:10.2528/PIERB08022806

15. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wideangle absorption by the use of a metamaterial plate," Progress In Electromagnetics Research Letters, Vol. 1, 35-44, 2008.
doi:10.2528/PIERL07111809

16. Zheng, Q., F. Xie, B. Yao, and W. Cai, "Hybrid CT-BEM method analysis of unscreened slab lines," Progress In Electromagnetics Research Letters, Vol. 2, 29-36, 2008.
doi:10.2528/PIERL07121301

17. Geng, Y.-L., X.-B. Wu, L.-W. Li, and B.-R. Guan, "Electromagnetic scattering by an inhomogeneous plasma anisotropic sphere of multilayers," IEEE Trans. Antennas Propagat., Vol. 53, No. 12, 3982-3989, 2005.
doi:10.1109/TAP.2005.859903

18. Lin, Z. and S. T. Chui, "Electromagnetic scattering by optically anisotropic magnetic particle," Physical Review E, Vol. 69, 056614, 2004.

19. Liu, S. and Z. Lin, "Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres ," Physical Review E, Vol. 73, 066609, 2006.

20. Fikioris, G., P. G. Cottis, and A. D. Panagopoulos, "On an integral related to biaxially anisotropic media," J. Comp. Appl. Math., Vol. 146, No. 2, 343-360, Sep. 2002.
doi:10.1016/S0377-0427(02)00368-0

21. Kokkorakis, G. C. and J. G. Fikioris, "EM field induced in inhomogeneous dielectric spheres by external sources ," IEEE Trans. on Antennas and Propagation, Vol. 55, No. 11, 3478-3490, 2007.
doi:10.1109/TAP.2007.908813

22. Kokkorakis, G. C., "A unified approach to acoustic fields induced in inhomogeneous spheres by external sources," Journal of Sound and Vibration, Vol. 312, 496-508, 2008.
doi:10.1016/j.jsv.2007.10.053

23. Roth, J. and M. J. Dignam, "Scattering and extinction cross sections for a spherical particle coated with an oriented molecular layer," Journal of the Optical Society of America, Vol. 63, No. 3, 308-311, 1973.
doi:10.1364/JOSA.63.000308

24. Sodha, M. S. and A. K. Ghatak, Inhomogeneous Optical Waveguides, Plenum Press, 1977.

25. Kokkorakis, G. C., J. G. Fikioris, and G. J. Fikioris, "Field induced in inhomogeneous spheres by external sources I. The scalar case," J. Acoust. Soc. America, Vol. 112, No. 4, 1297-1306, 2002.
doi:10.1121/1.1498274

26. Kokkorakis, G. C. and J. G. Fikioris, "Acoustic field induced in spheres with inhomogeneous density by external sources," J. Acoust. Soc. America, Vol. 115, No. 2, 478-487, 2004.
doi:10.1121/1.1635410

27. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.

28. Flugge, S., Practical Quantum Mechanics I, Springer-Verlag, 1971.

29. Watson, G. N., A Treatise on the Theory of Bessel Functions, 2nd Ed., Cambridge University Press, 1958.