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Abstract—A set of scalar differential equations for treating scattering
by rotationally symmetric radially inhomogeneous anisotropic sphere
is presented. These equations may easily be treated by applying the
integral equation method that has been developed. Besides a possible
different expansion in a Neumann series is also discussed.

1. INTRODUCTION

The consideration of electromagnetic waves in anisotropic media occurs
in a variety of citations [1–20]. Usually the treatment presented in the
literature is limited to the homogeneous anisotropic case [1], which
is already complex. However the evolution of the technology makes
necessary the handling of the more difficult case of the inhomogeneous
anisotropic scatterer.

When the medium is isotropic but inhomogeneous a handy method
based on a volume integral equation has been developed [21, 22].
In this method the unknown function is expanded in a vector
Dini series, which allows direct calculation of the resulting integrals
containing the Green function. For the case of the homogeneous but
gyrotropic or biaxial spherical bodies a similar approach has been
developed [18, 19]. This method consists in constructing a basis of
functions that satisfy the Maxwell equations in the whole space. Next
this set of functions should be used in conjunction with the appropriate
boundary conditions to form the actual solution.

It will be shown that the method developed for the inhomogeneous
spheres can be applied to the case of scattering by inhomogeneous
anisotropic spheres. Although the procedure seems straightforward
the expansions may be slowly convergent, since, as it has been known
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from the solution of anisotropic spheres with only three parameters
(εr, εθ, µ), the solution is expressed in terms of spherical Bessel
functions of non-integral order [23].

In case of inhomogeneity dependent only on r the solution is easier
to obtain, since the field can be expressed in terms of scalar potentials
as has been done in the case of radially inhomogeneous cylindrical
fibers [24]. The treatment of the resulting equations is similar to the
ones for the scalar (acoustic) problem, which has been developed by
the author and his collaborators [25, 26].

The corresponding equations are given below. Next a direct
verification in a special case is given as well as the possibility of
expanding the unknown function in terms of Neumann series is
discussed.

2. APPLICATION OF THE VECTOR DINI SERIES
METHOD

Here we consider a rotationally symmetric radially inhomogeneous
anisotropic dielectric sphere of radius α described in spherical
coordinates by the constitutional parameters

ε =


 εrr 0 0

0 τ σ
0 −σ τ


 , µ = µ0 (1)

The sphere is inside a homogeneous isotropic space described by
ε = ε0, µ = µ0, k0 = ω

√
ε0µ0, while exp(iωt) is the assumed time

dependence. An EM field of arbitrary direction is imposed. The
method that has been developed for inhomogeneous dielectric spheres
[21], can be easily extended to the present case. Using the expansions
for the field inside the sphere (r ≤ α)
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where the various symbols have been defined in [21], we derive again the
following equations, as in [21], which are repeated here for convenience
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Next we should eliminate one of the two groups of unknowns {A, B}
or {Γ, ∆, Z} of the expansions (12) and (13). Since Z are not present
in the final expressions it is better to eliminate Γ, ∆ so we write
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Selecting now ε as in (1) we find that
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and after some manipulation we derive that
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Here we may apply the orthogonality process to produce a system of
equations for the unknown coefficients. However a difficulty may occur
since the terms cannot be easily expanded in a small number of terms.
So the convergence of the series in (2), (3) may be very poor. For this
reason we are going to develop in the following section an alternative
approach. This is restricted to radially inhomogeneous anisotropic
spheres only, however, it is also applied to the case of spheres containing
both electric and magnetic anisotropies.

3. THE SET OF EQUATIONS

Following Monzon [1] we define the six-parameter material in (r, θ, ϕ)

ε =


 εrr 0 0

0 τ σ
0 −σ τ


 , µ =


 µrr 0 0
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 (10)

where all parameters are dependent on r only. Using the procedure
outlined in that paper we find after very lengthy manipulations the
following set of equations
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where we have defined Sr = r2εrrEr, Tr = r2µrrHr. Obviously,
when the parameters in ε and µ are independent of r we derive
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the corresponding equations of [1]. Once the equations for the
radial components have been solved the expressions for the transverse
components may be found. However, they are not necessary for the
integral approach discussed here.

4. DISCUSSION

In general with r-dependent parameters the solution of the above
system of equations can be formed using the method developed in the
corresponding scalar case for the inhomogeneous density [26]. However,
particular attention should be given to the discontinuities of the various
parameters since their differentiation gives rise to delta functions. We
may overcome this difficulty by stating the problem in a different way:
by considering as initial problem the scattered field by a homogeneous
anisotropic sphere with values of the parameters equal to those at the
interface. Then no delta functions appear in the treatment of the
integral equation.

To illustrate the application of the method we consider the simple
case of the three-parameter material (with (εr = εrr, εθ = τ , µ)). Then
we take the following integral equation for Sr, following the method of
Chew [27]:
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when the Green function G fulfils the equation [28]
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A direct substitution S = Arjv(kr) (A a constant), with k2 = ω2εθµ
reveals after long manipulations that the equation is fulfilled only
if v = −1

2 +
√
n(n + 1) εθ

εr
+ 1

4 [23] as expected from the alternative
solution based on separation of variables.

The general solution of the problem can also be formed (especially
when εθ = ε0

θ) via a Neumann series [29]
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However some difficult integrals appear for the j2
n(kr) term that should

be expressed in terms of Si(r) and Ci(r), rendering the calculation very
cumbersome.

5. CONCLUSION

A set of two scalar equations for treating scattering by rotationally
symmetric radially inhomogeneous anisotropic sphere is presented.
Using the scalar integral equation formulation [26], and expanding
the unknown function in Dini or Neumann series the problem can be
transformed to an algebraic one. Alternatively the vector Dini series
method [21, 22] can, also, be applied.
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