Vol. 1
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-03-24
Comparison of Fundamental Space-Filling Mode Index, Effective Index and the Second and Third Order Dispersions of Photonic Crystals Fibers Calculated by Scalar Effective Index Method and Empirical Relations Methods
By
Progress In Electromagnetics Research M, Vol. 1, 197-206, 2008
Abstract
To design less costly and time consuming Photonic Crystal Fibers it is better to use Empirical Relations Method instead of Scalar Effective Index Method. If we compare both empirical relations method and scalar effective index method by accurate and powerful methods like Full-Vector Finite Element Method, we find that empirical relations method has less error than scalar effective index method in calculating PCF parameters such as nfsm, neff , and the second order dispersion. According to the investigations, we concluded, the inherent error of scalar effective index method approximately increases when pitch decreases. In large pitches the calculation of dispersion by scalar effective index method reveals less error in low wavelengths than high wavelengths and finally we calculated the third order dispersion which is important in some applications.
Citation
Ali Pourkazemi, and Mojtaba Mansourabadi, "Comparison of Fundamental Space-Filling Mode Index, Effective Index and the Second and Third Order Dispersions of Photonic Crystals Fibers Calculated by Scalar Effective Index Method and Empirical Relations Methods," Progress In Electromagnetics Research M, Vol. 1, 197-206, 2008.
doi:10.2528/PIERM08021805
References

1. Andalib, A., A. Rostami, and N. Granpayeh, "Analytical investigation and evaluation of pulse broadening factor propagating through nonlinear optical fibers (traditional and optimum dispersion compensated fibers)," Progress In Electromagnetics Research, Vol. 79, 119-136, 2008.
doi:10.2528/PIER07092502

2. Guenneu, S., A. Nicolet, F. Zolla, and S. Lasquellec, "Numerical and theoretical study of photonic crystal fibers," Progress In Electromagnetics Research, Vol. 41, 271-305, 2003.

3. Kumar, D., P. K. Choudhury, and O. N. Singh II, "Towards the dispersion relations for dielectric optical fibers with helical windings under slow- and fast-wave considerations — A comparative analysis," Progress In Electromagnetics Research, Vol. 80, 409-420, 2008.
doi:10.2528/PIER07120302

4. Saitoh, K. and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Optical Society of America, Vol. 13, No. 1, 267-274, 2005.

5. Kim, J. I., Analysis and applications of microstructure and Holey optical fibers, Blacksburg, Virginia, Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University , September 10, 2003.

6. Li, Y., C. Wang, and M. Hu, "A fully vectorial effective index method for photonic crystal fibers: Application to dispersion calculation ," Optics Communications, Vol. 238, 29-33, 2004.
doi:10.1016/j.optcom.2004.04.040

7. Li, Y., C. Wang, Y. Chen, M. Hu, B. Liu, and L. Chai, "Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches," Applied Physics B, Vol. 85, 597-601, 2006.
doi:10.1007/s00340-006-2246-6

8. Sinha, R. K. and S. K. Varshney, "Dispersion properties of photonic crystal fibers," Microwave and Optical Technology Letters, Vol. 37, No. 2, 129-132, 2003.
doi:10.1002/mop.10845

9. Rostami, A. and A. Andalib, "A principal investigation of the group velocity dispersion (GVD) profile for optimum dispersion compensation in optical fibers: A theoretical study ," Progress In Electromagnetics Research, Vol. 75, 209-224, 2007.
doi:10.2528/PIER07060402

10. Panajotovic, A., D. Milovic, and A. Biswas, "Influence of even order dispersion on soliton transmission quality with coherent intereference ," Progress In Electromagnetics Research B, Vol. 3, 63-72, 2008.
doi:10.2528/PIERB07120404

11. Benson, T. M. and P. C. Kendall, "Variational techniques including effective and weighted index methods ," Progress In Electromagnetics Research, Vol. 10, 1-40, 1995.

12. Zhu, Z. M. and T. Brown, "Analysis of the space filling modes of photonic crystal fibers," Optics Express, Vol. 8, No. 10, 547-554, 2001.

13. Bjarklev, A., J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres, Kluwer Academic, 2003.

14. Birks, T. A., J. C. Knight, and P. S. J. Russell, "Endlessly singlemode crystal fiber," Optical Letters, Vol. 22, No. 13, 961-963, 1997.
doi:10.1364/OL.22.000961

15. Husakou, A. V. and J. Herrmann, "Supercontinuum generation of higher order solitons by fission in photonic crystal fibers," Phys. Rev. Lett., Vol. 34, No. 10, 1064-1076, 2001.

16. Koshiba M. and K. Saitoh, "Applicability of classical optical fiber theories to holey fibers," Optics Letters, Vol. 29, No. 10, 1739-1741, 2004.
doi:10.1364/OL.29.001739

17. Koshiba, M. and K. Saitoh, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron, Vol. 38, 927-933, 2002.