Vol. 4
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-02-05
Loss Mechanisms in SIW and Msiw
By
Progress In Electromagnetics Research B, Vol. 4, 299-309, 2008
Abstract
In this paper, the power dissipated through different loss mechanisms including dielectric, conductor and radiation loss is calculated for the substrate integrated waveguide (SIW) and modified substrate integrated waveguide (MSIW). The applied computational method being appropriate for structures with periodic conducting parts allows one to calculate the integrals corresponding to these powers analytically and with high accuracy.
Citation
Nazy Ranjkesh, and Mahmoud Shahabadi, "Loss Mechanisms in SIW and Msiw," Progress In Electromagnetics Research B, Vol. 4, 299-309, 2008.
doi:10.2528/PIERB08012807
References

1. Hirokawa, J. and M. Ando, "Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates," IEEE Trans. Antennas Propagat., Vol. 46, No. 5, 625-630, May 1998.
doi:10.1109/8.668903

2. Cassivi, Y. and K. Wu, "Substrate integrated circuits concept applied to the nonradiative dielectric guide," IEE Proc. Microw. Antennas Propag., Vol. 152, No. 1, 424-433, Feb. 2005.
doi:10.1049/ip-map:20045089

3. Han, S., X.-L.Wang, Y. Fan, Z. Yang, and Z. He, "The generalized chebyshev substrate integrated waveguide diplexer," Progress In Electromagnetics Research, Vol. 73, 29-38, 2007.
doi:10.2528/PIER07032002

4. Zhang, X.-C., Z.-Y. Yu, and J. Xu, "Novel band-pass substrate integrated waveguide (SIW) filter based on complementary split ring resonators (CSRRs)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
doi:10.2528/PIER07030201

5. Talebi, N. and M. Shahabadi, "Application of generalized multipole technique to the analysis of discontinuties in substrate integrated waveguides," Progress In Electromagnetics Research, Vol. 69, 227-235, 2007.
doi:10.2528/PIER06122107

6. Deslandes, D., Y. Cassivi, K. Wu, L. Perregrini, P. Arcioni, M. Bressan, and G. Conciauro, "Field analysis and design model of substrate integrated waveguide," 2002 Progress in Electromagn. Res. Symp. Proc., Jan. 7-10 2002.

8. Desland, D. and K. Wu, "Integrated transition of coplanar to rectangular waveguides," IEEE MTT-S Int. Microwave Simp. Dig., Vol. 2, 619-622, Feb. 2001.

9. Ranjkesh, N. and M. Shahabadi, "Reduction of dielectric losses in substrate integrated waveguide," IEE Electronics Letters, Vol. 42, 1230-1231, Oct. 2006.
doi:10.1049/el:20061870

10. Ghazi, G. and M. Shahabadi, "Modal analysis of extraordinary transmission through an array of subwavelength slits," Progress In Electromagnetics Research, Vol. 79, 59-74, 2008.
doi:10.2528/PIER07092402

11. Mittra, R. and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, 30-50, Macmillan, 1971.

12. Eleftheriades, G. V., A. S. Omar, and L. P. B. Katehi, "Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 10, 1896-1903, Oct. 1994.
doi:10.1109/22.320771

13. Collmann, R. R. and F. M. Landstorfer, "Calculation of the field radiated by horn-antennas using the mode-matching method," IEEE Trans. Antennas Propagat., Vol. 43, No. 8, 876-880, Aug. 1995.
doi:10.1109/8.402209

14. Kashani, Z. G., N. Hojjat, and M. Shahabadi, "Full-wave analysis of coupled waveguides in a two-dimensional photonic crystal," Progress In Electromagnetics Research, Vol. 49, 291-307, 2004.
doi:10.2528/PIER04042901

15. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 1, 66-73, Jan. 2005.
doi:10.1109/TMTT.2004.839303