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Abstract—In this paper, the power dissipated through different
loss mechanisms including dielectric, conductor and radiation loss is
calculated for the substrate integrated waveguide (SIW) and modified
substrate integrated waveguide (MSIW). The applied computational
method being appropriate for structures with periodic conducting parts
allows one to calculate the integrals corresponding to these powers
analytically and with high accuracy.

1. INTRODUCTION

The substrate integrated waveguide (SIW) is a promising waveguide
structure which maintains the advantages of the rectangular waveguide
(RW), such as high Q-factor and high power handling capability in
planar form [1–7]. In the SIW, two periodic rows of plated via-holes
are embedded in the substrate. They along with the top and bottom
metallic layers of the substrate introduce a structure similar to the
common RWs (Fig. 1).

Evidently, the propagation characteristics of the SIW cannot be
determined successfully without considering the effects of the power
dissipated in its dielectric and radiated through periodic gaps between
the adjacent vias. They reduce its Q-factor in comparison to a hollow
RW [8].

Since in the SIW, the inner part of the waveguide is filled with
a dielectric material, it can be predicted that dielectric loss plays
an important role in the total dissipation power. For reduction of
dielectric losses in the SIW, a new structure called modified substrate
integrated waveguide (MSIW) was introduced in which some part of
the dielectric of the substrate between periodic sidewalls has been
removed (Fig. 1) [9]. The manufacturing process of this waveguide
is also introduced in [9]. The present work concerns with an exact
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Figure 1. Substrate integrated waveguide. Volume V and surface A,
used in power calculations, are shown in this figure.

quantitative analysis of the SIW and MSIW in order to specify the
main cause of losses at a given frequency.

2. METHOD OF ANALYSIS

The method introduced in [9, 10] is adopted for this work. In
this method, dividing the structure into a number of homogeneous
dielectric and periodic conductor-dielectric regions and expressing
the electromagnetic fields in each region as a summation of proper
basis functions, whose coefficients satisfy the transmission line (TL)
equations, the full-wave analysis of the periodic structure is reduced to
the circuit analysis of the equivalent cascaded TL model.

2.1. Dispersion Diagrams

According to the Floquet theorem, the pseudo-Fourier nature of the
electromagnetic fields in a periodic structure allows us to express the
total fields as pseudo-Fourier series expansions. In our structure which
is periodic in the x direction, this property leads to the following series
expansions:

�E (�r ) = lim
M→∞

M∑
m=−M

�Em (y, z) e−(j 2mπ
L

+kx)x (1)

�H (�r ) = lim
M→∞

M∑
m=−M

�Hm (y, z) e−(j 2mπ
L

+kx)x (2)
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in which kx = jβ+α denotes the complex propagation constant of the
waveguide mode and L is the period of the structure (Fig. 1).

Since in the SIW, the height of the substrate (h) is very small in
comparison to the distance between periodic metallic walls (a), there
are no changes with respect to z for the modes with the lowest cut-off
frequencies. So we can reduce our analysis to a two-dimensional one. In
the two-dimensional analysis with variations in the x and y directions,
there are two groups of modes: TEx with Ez, Hx, and Hy components,
and TMx with Hz, Ex, and Ey components. Between these two groups
of modes, only TEx ones satisfy the necessary boundary conditions on
the surfaces of the top and bottom metallic layers of the substrate.
In other words, we begin our analysis with the two-dimensional TEx

modes with no variations with respect to z and satisfy the entire
necessary boundary conditions on the surfaces of the vias; since in
this analysis, there is no tangential electric field component in the x-
y plane, all necessary boundary conditions on the surfaces of the top
and bottom metallic layers are automatically satisfied and because of
no variations with respect to z, these modes have the lowest cut-off
frequencies.

These modes are denoted by TE0n modes, in which n is the
number of changes in the y direction between the two periodic walls
and 0 represents the number of changes in the z direction. Maxwell’s
equations for TE0n are reduced to three scalar equations as follow:

∂Ez

∂y
= −jωµ0Hx (3)

∂Ez

∂x
= −jωµ0Hy (4)

∂Hy

∂x
− ∂Hx

∂y
= jω(ε′ − jε′′)Ez (5)

By reducing our analysis to the two-dimensional case, we have to
study the structure in Fig. 2. As shown in this picture, we divide our
structure into homogeneous dielectric and periodic conductor-dielectric
layers in the y direction. Note that we have assumed rectangular via-
holes for the sake of simplicity; however, via-holes of circular cross-
section can equally be treated if one approximates curved walls with
fine rectilinear boundaries.

As mentioned earlier, in each layer we express the total
electromagnetic fields as a summation of proper basis functions.
For homogeneous layers, we use the space harmonics expressed in
Equations (1) and (2), as basis functions. By substitution of these
expansions in Maxwell’s equations for a homogeneous layer of (ε′ −
jε′′, µ), we obtain a system of first order differential equations for the
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Figure 2. Two dimensional view of SIW and its equivalent network
model.

coefficients of each space harmonic. For the m-th space harmonic,
these equations are expressed as:

∂

∂y
Ezm(y) = −jω LmHxm(y) (6)

∂

∂y
Hxm(y) = −(jωCm +Gm)Ezm(y) (7)

in which:

Lm = µ (8)

Cm = ε0

(
α2 −

(
2mπ
L

+ β

)2
)
/k2

0 + ε′ (9)

Gm = −2ωε0α
(
β +

2mπ
L

)
/k2

0 + ωε′′ (10)

These equations show that a homogeneous layer with (ε′− jε′′, µ)
can be substituted by a system of infinite number of TLs each
with capacitance, conductance, and inductance Cm, Gm, and Lm,
respectively. Voltages and currents of the TLs represent the coefficients
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of the m-th space harmonic of Ez and Hx, respectively. For all the
homogeneous layers, we use the same formulation.

For periodic conductor-dielectric layers, the total fields in
dielectric regions can be expressed as a summation of local modes φ̃n.
By assuming that the width of the gaps between two adjacent vias is d
and that the gap is centred at x = x0, the functions φ̃n are expressed
as:

φ̃n = cos(nπ(x− x0)/d) (11)

For the n-th local mode the following equations express the
relations between the coefficients:

d

dy
Ẽzn(y) = −jωL̃nH̃xn(y) (12)

d

dy
H̃xn(y) = −

(
jωC̃n + G̃n

)
Ẽzn(y) (13)

in which Ẽzn, H̃xn, and H̃yn are the coefficients of the corresponding
electromagnetic field components, and the coefficients C̃n, G̃n, and L̃n

are defined as:

L̃n = µ (14)

C̃n = −ε0
(
nπ

d

)2

/k2
0 + ε′ (15)

G̃n = ωε′′ (16)

Obviously, for this layer of the structure, there is also an equivalent
model of infinite number of TLs with parameters C̃n, G̃n, and L̃n.

Finally to establish the continuity condition of the electromagnetic
fields on the interface between two adjacent layers with different basis
functions, we use the mode matching technique by expanding one set
of basis functions in terms of the others and vice versa [11–13], while
for adjacent layers with similar basis functions, these conditions are
reduced to the continuity conditions of the voltages and currents of
the equivalent cascaded TLs.

Using the mode matching technique, the continuity condition
for Ez and Hx components reduces to the matrix relations between
the coefficients of the basis functions or equivalently between the
voltages and currents of the equivalent TLs. Finally, the complete
equivalent network is composed of a cascaded circuit of TLs in which
the successive layers with different basis functions are connected by the
multi-port networks (Fig. 2). For interfaces with similar basis functions
these equivalent TLs are directly connected.
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Since in practice the number of equivalent TLs for each layer
is limited, these numbers are chosen in a proper manner to satisfy
the necessary condition for applying mode matching technique in the
interfaces between layers with different basis functions [11]. For our
structure, this condition is expressed as 2M

L ≈ N
d , in which N is the

number of local modes in the periodic region and M is expressed
according to Equations (1) and (2).

The solutions of Vm(y) and Im(y) for each equivalent TL are
known, but because of the effect of the multi-port networks, the
variables Vm(y) and Im(y) for them-th TL in a specific layer are related
to the variables Vm′(y) and Im′(y) for the m′-th TL in that particular
layer. The continuity conditions for the voltages and currents of
the equivalent network help us to determine all the unknown vectors
[V +(y)] and [V −(y)], namely the forward and backward voltages for
each equivalent TL. If we consider the plane y = y0 as the reference
plane, the following equation holds.

[
V − (y0)

]
=

[
ΓR

in

] [
V + (y0)

]
(17)

In this equation, matrix [ΓR
in] is the reflection matrix evaluated from

the right TLs and has all the necessary information looking to the
right. Similar relation is true if we look to the left from this reference
plane: [

V + (y0)
]
=

[
ΓL

in

] [
V − (y0)

]
(18)

where the matrix [ΓL
in] is calculated looking to the left TLs from this

reference plane. The Equations (17) and (18) have nonzero solutions
if the following condition is satisfied [14]:

det
([

ΓR
in

] [
ΓL

in

]
− I

)
= 0 (19)

This equation is only a function of variables α, β, and ω and can
be used to extract dispersion properties of the waveguide.

2.2. Calculation of Dissipating Powers

To calculate dialectic losses, the value 1
2ωε

′′ |E|2 is integrated within
the volume occupied by the dielectric parts, while conductor losses
are evaluated using the integration of 1

2Rs |Hs|2 on the surfaces of the
metallic vias as well as the top and bottom metallic surfaces. In these
terms, ω, ε′′, Rs, |E| and |Hs| are, respectively, the frequency (rad/m),
the imaginary part of the dielectric permittivity, the surface resistance
of the metal and magnitudes of the electric and the tangential magnetic
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fields. According to Floquet’s theorem and because of the symmetry
of the structure, evaluating these integrals can be limited to the one
symmetrical half of a period. Radiation losses are evaluated integrating
the term 1

2
�E× �H∗ on the surface A in Fig. 1. Dielectric and conductor

losses are evaluated within the volume V in Fig. 1. By obtaining the
expansion coefficients appearing in the equivalent circuit model, the
corresponding integrals in each region can be expressed as an algebraic
summation of the analytical solutions. In evaluation of some of these
integrals Perseval’s formula can help to simplify the calculation.

3. RESULTS

The attenuation constants of the SIW and MSIW structures considered
on RO4003C (εr = 3.38, tan(δ) = 0.0027) and RT5880 (εr = 2.2,
tan(δ) = 0.0009) substrates are shown in Fig. 2. For RO4003C
substrate a= 8 mm, L= 2 mm and w/a= 0.9 and for RT5880 substrate
a= 10 mm, L= 2.2 mm and w/a= 0.9. Other parameters are selected
as b= c= 0.8 mm and h= 31 mil for all structures. All metallic parts
are considered as copper with σ= 5.6×107 S/m. The via-holes have
rectangular cross sections for simplicity. As is obvious in these
diagrams, the attenuation constants of the MSIW structures on both
substrates are almost flat by changing frequency and have significant
reduction in respect to the conventional SIWs on the same substrates.
For the SIW on RT5880 substrate the results obtained by HFSS and
calibration [15] are also shown in Fig. 2 for comparison.

Figure 3 shows the normalized powers lost through different
mechanisms, including dielectric losses (PD), conductor losses (PC),
and radiation losses (PR) of the SIW and MSIW structures on
RO4003C substrate. These powers are normalized with respect to
the total dissipated power so that PD + PC + PR is unity. As it is
obvious from these diagrams, dielectric losses are the most important
factor of power dissipation in the SIW (about 70–85 percent of the
total dissipated power) and the portion of this factor increases by
increasing frequency. After this factor, conductor losses form about the
18–28 percent of the total dissipated power, whereas radiation losses
are the less important dissipation factor which can be disregarded
consequently. For the MSIW, the losses in decreasing order of
significance are conductor losses, radiation losses, and dielectric losses.
The reduction of dielectric losses below radiation losses is significant in
this waveguide. The amount of power dissipated in dielectric increases
by increasing frequency which is obvious because of the linear relation
between dielectric losses and ωε′′. As a result, the flat slope of the
attenuation constant of the MSIW can be explained accordingly due
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Figure 3. Attenuation constants of the SIW and MSIW structures on
two common substrates.

Figure 4. Normalized dissipated powers for the SIW and MSIW
structures on RO4003C substrate.

to the reduced impact of dielectric losses on the MSIW.
Figure 4 shows the same diagrams for RT5880 substrate. For

this dielectric, similar results are obtained and dielectric losses still are
the most important dissipation factor in a wide range of frequencies.
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However, they are less significant in comparison to RO4003C substrate.
Also, in this case embedding an air-cut in the structure causes a
significant reduction of dielectric losses. In all these calculations
d= 20 mm.

It is also an important point to mention that different factors
can change the portions corresponding to different mechanisms. Since
in SIW and MSIW h � a, there are no changes with respect to z
for the modes with the lowest cutoff frequencies. When calculating
attenuated powers caused by different loss mechanisms, dielectric and
radiation losses as well as the portion of conductor losses related to
the surfaces of vias are all proportional to h, while conductor losses of
the top and bottom metallic layers are independent of h. As a result,
the contribution of conductor losses increases by reducing h. In the
cases mentioned above, reducing the height of the substrate to a lower
value of h = 20 mil, for the SIW on RT5880 substrate increases the
contribution of conductor losses such that the intersection of the two
diagrams corresponding to PD and PC shifts from 12 GHz at h = 31 mil
case to 23 GHz at h = 20 mil. However, for the SIW on RO4003C
substrate, h has no significant effect, and dielectric losses are still the
most significant dissipation mechanism. As expected, the fraction of
power dissipated by radiation increases by increasing the period of the
waveguide, but as long as its value remains in the typical range, its
effect is not very significant.

Figure 5. Normalized dissipated powers for the SIW and MSIW
structures on RT5880 substrate.
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4. CONCLUSION

As mentioned in this letter, in the SIW, dielectric loss usually is the
most important factor of power dissipation; however, by introducing
an air-cut in the SIW in the form of the MSIW, its influence can be
reduced significantly. In MSIW, which offers a higher Q-factor, the
major power dissipation is due to conductor loss.
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