Vol. 4
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-01-15
Analytical Study of the Interaction Structure of Vane-Loaded Gyro-Traveling Wave Tube Amplifier
By
Progress In Electromagnetics Research B, Vol. 4, 41-66, 2008
Abstract
This article discusses the-state-of-the-art of the vaneloaded gyrotron traveling wave tube (gyro-TWT) amplifier, which is device of increasing importance for high resolution radar and high information density communication systems because of its high-power and broad bandwidth capabilities. Vane loading is identified as a means to achieve a low-beam energy, high-harmonic, low-magnetic field, mode-selective and stable operation of a gyro-TWT. Thus, the development of a simple approach to the analysis of the interaction structure of vane-loaded gyro-TWT has been identified as a problem of practical relevance.
Citation
Ghanshyam Singh, "Analytical Study of the Interaction Structure of Vane-Loaded Gyro-Traveling Wave Tube Amplifier," Progress In Electromagnetics Research B, Vol. 4, 41-66, 2008.
doi:10.2528/PIERB08010402
References

1. Felch, K. L., B. G. Danly, H. R. Jory, K. E. Kreischer, W. Lawson, B. Levush, and R. J. Temkin, "Characteristics and application of fast-wave gyro-devices," Proc. IEEE, Vol. 87, 752-781, 1999.
doi:10.1109/5.757254

2. Gold, S. H. and G. S. Nusinovich, "Review of high power microwave source research," Rev. Sci., Instrum., Vol. 68, 3945-3974, 1997.
doi:10.1063/1.1148382

3. Granatstein, V. L., B. Levush, B. G. Danly, and R. K. Parker, "A quarter century of gyrotron research and development," IEEE Trans. Plasma Sci., Vol. 25, 1322-1335, 1997.
doi:10.1109/27.650903

4. Rao, S. J., P. K. Jain, and B. N. Basu, "Amplification in gyro-travelling-wave tubes-dispersion relation and gain-bandwidth characteristics," J. IETE Technical Review, Vol. 13, 141-150, 1996.

5. Goldenberg, A. L. and A. G. Livak, "Recent progress of high-power millimeter wavelength gyrodevices," Phys. Plasma, Vol. 2, 2562-2572, 1995.
doi:10.1063/1.871218

6. Symon, R. S., H. R. Jory, J. Hegji, and P. E. Fergusion, "An experimental gyro-TWT," IEEE Trans. Microwave Theory Tech., Vol. 29, 181-184, 1991.
doi:10.1109/TMTT.1981.1130324

7. Chu, K. R., H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, and T. T. Yang, "Ultra-high gain gyrotron traveling wave amplifier," Phys. Rev. Lett., Vol. 81, 4760-4763, 1998.
doi:10.1103/PhysRevLett.81.4760

8. Chu, K. R., H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, and D. Dialetis, "Theory and experiment of ultra-high gain gyrotron traveling wave amplifier," IEEE Trans. Plasma Sci., Vol. 27, 391-404, 1999.
doi:10.1109/27.772266

9. Latham, P. E. and G. S. Nusinovich, "Theory of relativistic gyro-travelling wave devices," Phys. Plasma, Vol. 2, 3494-3510, 1995.
doi:10.1063/1.871131

10. Chu, K. R., A. T. Drobot, H. H. Szu, and P. Sprangle, "Theory and simulation of gyrotron travelling-wave amplifier operating at cyclotron harmonics," IEEE Trans. Microwave Theory Tech., Vol. 28, 313-317, 1980.
doi:10.1109/TMTT.1980.1130070

11. Chu, K. R., A. T. Drobot, V. L. Granatstein, and J. L. Seftor, "Characteristics and optimum operating parameters of a gyrotron travelling wave amplifier," IEEE Trans. Microwave Theory Tech., Vol. 27, 178-187, 1979.
doi:10.1109/TMTT.1979.1129583

12. Leou, K. C., D. B. Mcdermott, and N. C. Luhmann Jr., "Dielectric-loaded wideband gyro-TWT," IEEE Trans. Plasma Sci., Vol. 20, 188-196, 1992.
doi:10.1109/27.142819

13. Rao, S. J., P. K. Jain, and B. N. Basu, "Hybrid-mode helix-loading effects on gyro-travelling-wave tubes," Int. J. Electron., Vol. 82, 663-675, 1997.
doi:10.1080/002072197135814

14. Rao, S. J., P. K. Jain, and B. N. Basu, "Broadbanding of gyro-TWT by dispersion shaping through dielectric loading," IEEE Trans. Electron Devices, Vol. 43, 2290-2299, 1996.
doi:10.1109/16.544423

15. Chu, J. Y. and H. S. Uhm, "Analysis of the wide band gyrotron amplifier in a dielectric loaded waveguide," J. Appl. Phys., Vol. 52, 4506-4516, 1982.

16. Leou, K. C., T. Pi, D. B. McDermott, and N. C. Luhmann, "Circuit design for a wide-band disk-loaded gyro-TWT amplifier," IEEE Trans. Plasma Sci., Vol. 26, 488-495, 1998.
doi:10.1109/27.700782

17. Singh, K., P. K. Jain, and B. N. Basu, "Analysis of a coaxial waveguide corrugated with wedge-shaped radial vanes considering azimuthal harmonic effects," Progress In Electromagnetics Research, Vol. 47, 297-312, 2004.
doi:10.2528/PIER04010201

18. Uhm, H. S. and J. Y. Choe, "Gyrotron amplifier in a helix loaded waveguide," Phys. Fluids, Vol. 26, 3418-3425, 1983.
doi:10.1063/1.864079

19. Choe, J. Y. and H. S. Uhm, "Theory of gyrotron amplifiers in disc or helix loaded waveguides," Int. J. Electron., Vol. 53, 729-741, 1982.
doi:10.1080/00207218208901564

20. Uhm, H. S. and J. Y. Choe, "Theory of gyrotron amplifier in a tape helix loaded waveguide," J. Appl. Phys., Vol. 54, 4889-4894, 1983.
doi:10.1063/1.332799

21. Cooke, S. J. and G. G. Denisov, "Linear theory of wide-band gyro-TWT amplifier using spiral waveguide," IEEE Trans. Plasma Sci., Vol. 26, 519-530, 1998.
doi:10.1109/27.700786

22. Denisov, G. G., V. L. Bratman, A. D. R. Phelps, and S. V. Samsonov, "Gyro-TWT with a helical operating waveguide: New possibilities to enhance efficiency and frequency bandwidth," IEEE Trans. Plasma Sci., Vol. 26, 508-518, 1998.
doi:10.1109/27.700785

23. Rao, S. J., P. K. Jain, and B. N. Basu, "Two-stage dielectric-loading for broadbanding a gyro-TWT," IEEE Electron Device Letters, Vol. 17, 303-305, 1996.
doi:10.1109/55.496465

24. Nusinovich, G. S. and O. V. Sinitsyn, "Linear theory of gyro-traveling wave tubes with distributed losses," Phys. Plasmas, Vol. 8, 3427-3433, 2001.
doi:10.1063/1.1381423

25. Ganguly, A. K. and S. Ahn, "Large-signal theory of a two-stage wideband gyro-TWT," IEEE Trans. Electron Devices, Vol. 31, 474-480, 1984.
doi:10.1109/T-ED.1984.21553

26. Park, G. S., J. J. Choi, S. Y. Park, C. M. Armstrong, A. K. Ganguly, R. H. Kyser, and R. K. Parker, "Gain broadening of two-stage gyrotron traveling wave tube amplifier," Phys. Rev. Lett., Vol. 74, 2399-2402, 1995.
doi:10.1103/PhysRevLett.74.2399

27. Chu, K. R., Y. Y. Lau, L. R. Barnett, and V. L. Granatstein, "Theory of a wide-band distributed gyrotron traveling-wave amplifier," IEEE Trans. Electron Devices, Vol. 28, 866-871, 1981.
doi:10.1109/T-ED.1981.20301

28. Furuno, D. S., D. B. McDermott, C. S. Kou, N. C. Luhmann Jr., and P. Vitello, "Theoretical and experimental investigation of a high-harmonic gyro-travelling-wave tube amplifier," Phys. Rev. Lett., Vol. 62, 1314-1317, 1989.
doi:10.1103/PhysRevLett.62.1314

29. Furuno, D. S., D. B. McDermott, C. S. Kou, N. C. Luhmann Jr., and P. Vitello, "Operation of a large-orbit high-harmonic gyro-traveling wave tube amplifier," IEEE Trans. Plasma Sci., Vol. 18, 313-320, 1990.
doi:10.1109/27.55900

30. Chu, K. R., L. R. Barnett, W. K. Lau, L. H. Chang, and H. Y. Chen, "A wide-band millimeter-wave gyrotron traveling-wave amplifier experiment," IEEE Trans. Electron Devices, Vol. 37, 1557-1560, 1990.
doi:10.1109/16.106257

31. Chu, K. R., L. R. Barnett, H. Y. Chen, S. H. Chen, C. H. Wang, Y. S. Yeh, Y. C. Tsai, T. T. Yang, and T. Y. Dawn, "Stabilisation of absolute instabilities in the gyrotron travailing-wave amplifier," Phys. Rev. Lett., Vol. 74, 1103-1106, 1995.
doi:10.1103/PhysRevLett.74.1103

32. Chong, C. K., D. B. McDermott, and N. C. Luhmann, "Large-signal operation of a third-harmonic slotted gyro-TWT amplifier," IEEE Trans. Plasma Sci., Vol. 26, 500-507, 1998.
doi:10.1109/27.700784

33. Chong, C. K., D. B. McDermott, A. T. Balkcum, and N. C. Luhmann Jr., "Nonlinear analysis of high-harmonic slotted gyro-TWT amplifier," IEEE Trans. Plasma Sci., Vol. 20, 176-187, 1992.
doi:10.1109/27.142818

34. Wang, Q. S., D. B. McDermott, and N. C. Luhmann Jr., "Operation of a stable 200kW second-harmonic gyro-TWT amplifier," IEEE Trans. Plasma Sci., Vol. 24, 700-706, 1996.
doi:10.1109/27.533071

35. Chong, C. K., D. B. McDermott, A. T. Lin, W. J. DeHope, Q. S. Wang, and N. C. Luhmann Jr., "Stability of a 95 GHz slotted third-harmonic gyro-TWT amplifier," IEEE Trans. Plasma Sci., Vol. 24, 735-743, 1996.
doi:10.1109/27.533075

36. McDermott, D. B., B. H. Deng, K. X. Liu, J. Van Meter, Q. S. Wang, and N. C. Luhmann Jr., "Stable 2MW, 35 GHz, Third-harmonic TE41 Gyro-TWT amplifier," IEEE Trans. Plasma Sci., Vol. 26, 482-487, 1998.
doi:10.1109/27.700781

37. Tiong, K. K., S. P. Kuo, and S. C. Kuo, "Optimization of the design of cusptron microwave oscillators," Int. J. Electron., Vol. 65, 397-408, 1988.
doi:10.1080/00207218808945240

38. Li, H. and X. Li, "Analysis and calculation of an electron cyclotron maser having inner and outer slotted structure," Int. J. Electron., Vol. 70, 213-219, 1991.
doi:10.1080/00207219108921272

39. Chu, K. R. and D. Dialetis, "Kinetic theory of harmonic gyrotron oscillation with slotted resonant structure," Infrared and Millimeter Waves, Vol. 1, 45-753, Academic Press, New York, 1985.

40. Lau, Y. Y. and L. R. Barnett, "Theory of low magnetic field gyrotron (gyromagnetron)," Int. J. Infrared and Millimeter Waves, Vol. 3, 619-643, 1982.
doi:10.1007/BF01009725

41. Lau, Y. Y. and L. R. Barnett, "A low magnetic field gyrotron-gyro-magnetron," Int. J. Electron, Vol. 53, 693-698, 1982.
doi:10.1080/00207218208901560

42. Destler, W. W., R. L. Weiler, and C. D. Striffler, "High-power microwave generation from a raotating E layer in a magnetron type waveguide," Appl. Phys. Lett., Vol. 38, 570-572, 1981.
doi:10.1063/1.92416

43. Namkung, W., "Observation of microwave generation from a cusptron devices," Phys. Fluids, Vol. 27, 329-330, 1984.
doi:10.1063/1.864629

44. Leou, K. C., D. B. McDermott, A. J. Balkcum, and N. C. Luhmann Jr., "Stable high-power TE01 gyro-TWT amplifiers," IEEE Trans. Plasma Sci., Vol. 22, 585-592, 1994.
doi:10.1109/27.338271

45. Chong, C. K., D. B. McDermott, and N. C. Luhmann Jr., "Slotted third harmonic gyro-TWT amplifier experiment," IEEE Trans. Plasma Sci., Vol. 24, 727-734, 1996.
doi:10.1109/27.533074

46. Menninger, W. L., B. G. Danly, and R. J. Temkin, "Multi-meagawatt relativistic harmonic gyrotron-travelling wave tube amplifier experiments," IEEE Trans. Plasma Sci., Vol. 24, 687-699, 1996.
doi:10.1109/27.533070

47. Kou, C. S., Q. S. Wang, and D. B. McDermott, "High power harmonics gyro-TWT's Part I: Linear theory and oscillation study," IEEE Trans. Plasma Sci., Vol. 20, 155-162, 1992.
doi:10.1109/27.142815

48. Latham, P. E. and G. S. Nusinovich, "Stability analysis of relativistic gyro-traveling wave devices," Phys. Plasma, Vol. 2, 3511-3523, 1995.
doi:10.1063/1.871132

49. Guo, H., S. H. Chen, V. L. Granatstein, R. Rodgers, G. Nusinovich, M.Walter, B. Levush, and W. J. Chen, "Operation of a highly overmoded, harmonic-multiplying, wideband gyrotron amplifier," Phys. Rev. Lett., Vol. 79, 515-518, 1997.
doi:10.1103/PhysRevLett.79.515

50. Grow, R. W. and U. A. Shrivastava, "Impedance calculation for travelling wave gyrotrons operating at harmonics of cyclotron frequency in magnetron type circuits," Int. J. Electron., Vol. 53, 699-707, 1982.
doi:10.1080/00207218208901561

51. Park, G. S., S. Y. Park, R. H. Kyser, C. M. Armstrong, A. K. Ganguly, and R. K. Parker, "Broadband operation of Ka-band tapered gyro-travelling wave amplifier," IEEE Trans. Plasma Sci., Vol. 22, 536-543, 1994.
doi:10.1109/27.338265

52. Denisov, G. G., V. L. Bratman, A. W. Gross, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, and C. G. Whyte, "Gyrotron travelling wave amplifier with a helical interaction waveguide," Phys. Rev. Lett., Vol. 81, 5680-5683, 1998.
doi:10.1103/PhysRevLett.81.5680

53. McDermott, D. B., H. H. Song, Y. Hirata, A. T. Lin, T. H. Chang, H. L. Hsu, K. R. Chu, and N. C. Luhmann Jr., "Design of a W-band TE01 mode gyrotron travelling wave amplifier with high-power and broadband capabilities," IEEE Trans. Plasma Sci., Vol. 30, 894-902, 2002.
doi:10.1109/TPS.2002.801559

54. Wang, Q. S., C. S. Kou, D. B. McDermott, A. T. Lin, K. R. Chu, and N. C. Luhmann Jr., "High-power harmonic gyro-TWTs --- Part II: Nonlinear theory and design," IEEE Trans. Plasma Sci., Vol. 20, 163-169, 1992.
doi:10.1109/27.142816

55. Lin, A. T., K. R. Chu, C. C. Lin, C. S. Kou, D. B. McDermott, and N. C. Luhmann Jr., "Marginal stability design criteria for gyro-TWTs and comperison of fundamental with second harmonic operation," Int. J. Electron., Vol. 72, 873-885, 1992.
doi:10.1080/00207219208925621

56. Barnett, L. R., L. H. Chang, H. Y. Chen, K. R. Chu, Y. K. Lau, and C. C. Tu, "Absolute instability competition and suppression in a millimeter wave gyrotron travelling wave tube," Phys. Rev. Lett., Vol. 63, 1062-1065, 1989.
doi:10.1103/PhysRevLett.63.1062

57. Nusinovich, G. S. and H. Li, "Large-signal theory of gyro-travelling wave tubes at cyclotron harmonics," IEEE Trans. Plasma Sci., Vol. 20, 170-175, 1992.
doi:10.1109/27.142817

58. Singh, G., S. M. S. Ravi Chandra, P. V. Bhaskar, P. K. Jain, and B. N. Basu, "Analysis of an azimuthally periodic vane-loaded cylindrical waveguide for a gyro-travelling wave tube," Int. J. Electronics, Vol. 86, No. 12, 1463-1479, Dec. 1999.

59. Singh, G., S. M. S. Ravi Chandra, P. V. Bhaskar, P. K. Jain, and B. N. Basu, "Control of gain-frequency response of a vane-loaded gyro-TWT by beam and magnetic field parameters," Microwave Optical and Technology Letters, Vol. 24, No. 2, 140-145, Feb. 2000.
doi:10.1002/(SICI)1098-2760(20000120)24:2<140::AID-MOP18>3.0.CO;2-O

60. Agrawal, M., G. Singh, P. K. Jain, and B. N. Basu, "Two-stage vane loading of gyro-TWT for high gains and bandwidths," Microwave Optical and Technology Letters, Vol. 27, No. 3, 210-213, March 2000.
doi:10.1002/1098-2760(20001105)27:3<210::AID-MOP20>3.0.CO;2-0

61. Agrawal, M., G. Singh, P. K. Jain, and B. N. Basu, "Analysis of tapered vane loaded broad band gyro-TWT," IEEE Trans. Plasma Science, Vol. 29, No. 3, 439-444, March 2001.
doi:10.1109/27.928941

62. Singh, G., S. M. S. Ravi Chandra, P. V. Bhaskar, P. K. Jain, and B. N. Basu, "Analysis of vane-loaded gyro-TWT for the gain-frequency response," IEEE Trans. Plasma Science, Vol. 32, No. 5, 2130-2138, May 2004.
doi:10.1109/TPS.2004.835528

63. Singh, G. and B. N. Basu, "Improved approach for the gain-frequency response of vane-loaded gyro-TWT," IEEE Trans. Plasma Science, Vol. 33, No. 4, 1443-1446, August 2005.
doi:10.1109/TPS.2005.854623

64. Singh, G., M. V. Kartikeyan, A. K. Sinha, and B. N. Basu, "Effects of beam and magnetic field parameters on highly competing TE01 and TE21 modes of vane loaded Gyro-TWT," Int. J. Infrared and Millimeter Waves, Vol. 23, No. 4, 517-533, April 2002.
doi:10.1023/A:1015727009153

65. Singh, G., M. V. Kartikeyan, and B. N. Basu, "Gain-frequency response of nearby waveguide mode in vane-loaded gyro-TWTs," IEEE Trans. Plasma Science, Vol. 34, No. 6, 554-558, June 2006.
doi:10.1109/TPS.2006.875781

66. Singh, G. and M. V. Kartikeyan, "Optimization of vane parameters for the gain-frequency response of a vane-loaded gyro-TWT," Int. J. Infrared and Millimeter Waves, Vol. 26, No. 2, 247-261, February 2005.
doi:10.1007/s10762-005-3003-3

67. Singh, G., M. V. Kartikeyan, and G. S. Park, "Gain and bandwidth analysis of vane-loaded gyro-TWT," Int. J. Infrared and Millimeter Waves, Vol. 27, No. 3, 333-341, March 2006.
doi:10.1007/s10762-006-9055-1

68. Singh, G. and B. N. Basu, "Modal analysis of azimuthally periodic vane-loaded cylindrical waveguide for gyro-TWT," Progress In Electromagnetics Research, Vol. 70, 175-189, 2007.
doi:10.2528/PIER07010601

69. Lee, H. S., "Dispersion relation of corrugated circular waveguides," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 10, 1391-1406, 2005.
doi:10.1163/156939305775525873

70. Basu, B. N., R. K. Jha, and L. Kishor, "Electromagnetic wave propagation through an azimuthally perturbed helix," J. Appl. Phys., Vol. 8, 3625-3627, 1985.
doi:10.1063/1.336294

71. Khalaj-Amirhosseini, M., "Analysis of longitudinally inhomogeneous waveguides using the Fourier series expansion," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1299-1310, 2006.
doi:10.1163/156939306779276758

72. Hernandez-Lopez, M. A. and M. Quintillan-Gonzalez, "A finite element method code to analyze waveguide dispersion," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 397-408, 2007.
doi:10.1163/156939307779367396

73. Park, J. K. and J. N. Lee, "A full wave analysis of a coaxial waveguide slot bridge using the Fourier transform technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 143-158, 2006.
doi:10.1163/156939306775777198

74. Yener, N., "Algebaric function approximation in eigen value problem of lossless metallic waveguide: Examples," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 731-745, 2006.
doi:10.1163/156939306776143442

75. Yener, N., "Advancement of algebaric function approximation in eigen value problems of lossless metllic waveguidses to infinite dimensions, part I: Properties of the operation in infinite dimensions," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1611-1628, 2006.
doi:10.1163/156939306779292363

76. Yener, N., "Advancement of algebaric function approximation in eigenvalue problems of lossless metallic waveguides to infinite dimensions, part III: Examples verifying theory," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1861-1874, 2006.
doi:10.1163/156939306779292291

77. McLachlan, N. W., Bessel Functions for Engineers, Clarendes, 1943.