Vol. 81
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-01-17
Stencil Coefficient Computations for the Multiresolution Time Domain Method - a Filterbank Approach
By
Progress In Electromagnetics Research, Vol. 81, 149-166, 2008
Abstract
Multiresolution Time Domain (MRTD) techniques based on wavelet expansions can be used for adaptive refinement of computations to economize the resources in regions of space and time where the fields or circuit parameters or their derivatives are large. Hitherto, standard wavelets filter coefficients have been used with the MRTD method but the design of such filter itself may enable to incorporate desired properties for different applications. Towards this, in this paper, a new set of stencil coefficients in terms of scaling coefficients starting from a half band filter, designed by window method and deriving a physically realizable filter by spectral factorization using cepstral technique, for the MRTD method is presented. These stencil coefficients for the MRTD are found to give good agreement with similar MRTD schemes such as those obtained using Daubechies orthogonal wavelets.
Citation
Sevoor Meenakshisund Vaitheeswaran, and S. Narasimhan, "Stencil Coefficient Computations for the Multiresolution Time Domain Method - a Filterbank Approach," Progress In Electromagnetics Research, Vol. 81, 149-166, 2008.
doi:10.2528/PIER07121801
References

1. Ali, M. and S. Sanyal, "FDTD analysis of rectangular waveguide in receiving mode as EMI sensors," Progress In Electromagnetics Research B, Vol. 2, 291-303, 2008.
doi:10.2528/PIERB07112901

2. Ali, M. and S. Sanyal, "FDTD analysis of dipole antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 69, 341-359, 2007.
doi:10.2528/PIER06122801

3. Alimenti, F., P. Mezzanotte, I. Roselli, and R. Sorrentino, "Modal absorption in the FDTD method: A critical review," International Journal of Numerical Modeling: Electronic Networks, Vol. 10, No. 4, 245-264, 1997.
doi:10.1002/(SICI)1099-1204(199707)10:4<245::AID-JNM278>3.0.CO;2-P

4. Beylkin, G., "On the representation of operators in basis of compactly supported wavelets," SIAM Journal on Numerical Analysis, Vol. 29, No. 12, 1716-1740, 1992.
doi:10.1137/0729097

5. Chen, X., D. Liang, and K. Huang, "Microwave imaging of 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

6. Cheong, Y., Y. M. Lee, K. H. Ra, J. G Kang, and C. C Shin, "Wavelet Galerkin scheme of time dependent inhomogeneous electromagnetic problems," IEEE Microwave Guided Wave Lett., Vol. 9, No. 8, 297-299, 1999.
doi:10.1109/75.779907

7. Choi, S. H., D. W. Seo, and N. H. Myung, "Scattering analysis of open-ended cavity with inner object," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1689-1702, 2007.

8. Dogaru, T. and L. Carin, "Multiresolution time domain using CDF biorthogonal wavelets," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 5, 902-912, 2001.
doi:10.1109/22.920147

9. Tentzeris, E. M., A. Cangellaris, L. P. B. Katehi, and J. Harvey, "Multiresolution time domain (MRTD) adaptive schemes using arbitrary resolution of wavelets," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 2, 501-513, 2002.
doi:10.1109/22.982230

10. Fayedeh, H., C. Ghobadi, and J. Nourinia, "An improvement for FDTD analysis of thin-slot problems," Progress In Electromagnetics Research B, Vol. 2, 15-25, 2008.
doi:10.2528/PIERB07102907

11. Golestani-Rad, L., J. Rashed-Mohassel, and M. M. Danaie, "Rigorous analysis of EM-wave penetration into a typical room using FDTD method: The transfer function concept," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 913-926, 2006.
doi:10.1163/156939306776149851

12. Hadi, M. F. and R. K. Dib, "Phase-matching the hybrid FV24/S22 FDTD algorithm," Progress In Electromagnetics Research, Vol. 72, 307-323, 2007.
doi:10.2528/PIER07031601

13. Jameson, L., "On the daubechies based wavelet differentiation matrix," TechnicalReport93-95, 93-95, 1993.

14. Krumphotz, M. and L. P. B. Katehi, "MRTD: New time domain schemes based on multiresolution analysis," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 4, 555-571, 1996.
doi:10.1109/22.491023

15. Kung, F. and H.-T. Chuah, "Finite-Difference Time-Domain (FDTD) software for simulation of printed circuit board (PCB) assembly," Progress In Electromagnetics Research, Vol. 50, 299-335, 2005.
doi:10.2528/PIER04071401

16. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the finite difference frequency domain method," Progress In Electromagnetics Research, Vol. 67, 1-24, 2007.
doi:10.2528/PIER06083104

17. Lee, J. H. and H. T. Kim, "Radar target discrimination using transient response reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 19, 655-669, 2005.
doi:10.1163/1569393053305062

18. Mouysset, V., P. A. Mazet, and P. Borderies, "A new approach to evaluate accurately and efficiently electromagnetic fields outside a bounded zone with time-domain volumic methods," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 803-817, 2006.
doi:10.1163/156939306776143398

19. Fujii, M. and W. J. R. Hoefer, "Interpolating wavelet Galerkin model of time dependent inhomogeneous electrically large optical waveguide problems," IEEE MTT-S Digest, 1045-1048, 2001.

20. Narasimhan, S. V. and S. Veena, Signal Processing — Principles and Implementation, Narosa Publishers, 2005.

21. Kovvali, N., W. Lin, and L. Carin, "Accurate computation of stencil coefficients for multiresolution time domain," available at www.duke.edu/ narayan/.

22. Oppenheim, A. V. and R. W Shafer, Discrete-Time Signal Processing, Prentice Hall, 1989.

23. Pala, W. P., A. Taflove, M. J. Piket, and R. M. Joseph, "Parallel finite difference time domain calculations," IEEE Trans. Antennas & Propagation, Vol. 30, 83-85, 1991.

24. Paul, C. R., "Incorporation of terminal constraints in the FDTD analysis of transmission lines," IEEE Trans. Electromagnetic Compat., Vol. 36, No. 5, 85-93, 1994.
doi:10.1109/15.293284

25. Petropoulos, P. G., "Phase error control for FDTD methods of second and fourth order accuracy," IEEE Trans. Antennas & Propagation, Vol. 42, 859-862, 1994.
doi:10.1109/8.301709

26. Poljak, D. and V. Doric, "Wire antenna model for transient analysis of simple grounding systems, Part I: The vertical grounding electrode," Progress In Electromagnetics Research, Vol. 64, 149-166, 2006.
doi:10.2528/PIER06062101

27. Poljak, D. and V. Doric, "Wire antenna model for transient analysis of simple grounding systems, Part II: The horizontal grounding electrode," Progress In Electromagnetics Research, Vol. 64, 167-189, 2006.
doi:10.2528/PIER06062102

28. Roberts, T. M., "Measured electromagnetic pulses verify asymptotic and analysis for linear, dispersive media," Journal of Electromagnetic Waves and Applications, Vol. 20, 1845-1851, 2006.
doi:10.1163/156939306779292200

29. Shalger, K. L., J. G. Maoloney, S. L. Ray, and A. F. Peterson, "Relative accuracy of several Finite Difference Time Domain methods in two and three dimensions," IEEE Trans. Antennas & Propagation, Vol. 41, 1732-1737, 1993.
doi:10.1109/8.273296

30. Shao, W., B.-Z. Wang, and X.-F. Liu, "Complex variable technique in compact 2-D order-marching time-domain method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1453-1460, 2007.

31. Taflove, A., "Review of the formulation of the FDTD method of numerical model of electromagnetic wave interaction with arbitrary structures," Wave Motion, Vol. 10, 547-582, 1988.
doi:10.1016/0165-2125(88)90012-1

32. Tang, M., J. F. Mao, and X. C. Li, "A novel timedomain integration method for transient analysis of non-uniform transmission lines," PIERS Online, Vol. 3, No. 1, 2007.

33. Dogaru, T. and L. Carin, "Scattering analysis by the multiresolution time domain method using compactly supported wavelet systems," IEEE Trans. Antennas Propagat., Vol. 50, No. 7, 2002.

34. Tentzeris, E., R. Robertson, A. Cangellaris, and L. P. B. Katehi, "Space and time adapting gridding using MRTD," IEEE MTT-S Digest, 337-340, 1997.

35. Huang, T.-W., H. Bijan, and T. Itoh, "The implementation of time domain diakoptics in the FDTD method," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 11, 2149-2155, 1994.
doi:10.1109/22.330131

36. Uduwawala, D., M. Norgren, P. Fuks, and A. Gunawardena, "A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002

37. Varadarajan, V. and R. Mittra., "Finite-Difference Time-Domain analysis using distributed computing," IEEE Microwave and Guided Wave Letters, Vol. 4, 144-145, 1994.
doi:10.1109/75.289515

38. Sha, W., X. Wu, and M. Chen, "A diagonal split-cell model for the high-order symplectic FDTD scheme," PIERS Online, Vol. 2, No. 6, 2006.
doi:10.2529/PIERS060903035033

39. Yee, K. S., "Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 5, 302-307, 1966.

40. Yong, Z.K. R. Shao, X. W. Hu, and J. D. Lavers, "An upwind leapfrog scheme for computational electromagnetics: CL-FDTD," Progress In Electromagnetics Research Symposium, 22-26, 2005.

41. Young, J. L. and R. Adams, "Excitation and detection of waves in the FDTD analysis of N-port networks," Progress In Electromagnetics Research, Vol. 53, 249-269, 2005.
doi:10.2528/PIER04100701

42. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

43. Zhang, Y., W. Ding, and C. H. Liang, "Study on the optimum virtual topology for MPI based parallel conformal FDTD algorithms on PC clusters," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1817-1831, 2005.
doi:10.1163/156939305775696856