Vol. 4
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-01-15
Unified Derivation of the Translational Addition Theorems for the Spherical Scalar and Vector Wave Functions
By
Progress In Electromagnetics Research B, Vol. 4, 79-99, 2008
Abstract
The translational addition theorems for the spherical scalar and vector wave functions are derived in a novel, unified way based on the simple and well-known concepts of the radiation and incoming wave patterns. This approach makes the derivation simpler and more transparent compared to the previous approaches. As a result, we also obtain alternative and partly simpler expressions for the translation coefficients in the vector case.
Citation
Tommi Dufva, Jukka Sarvas, and Johan Sten, "Unified Derivation of the Translational Addition Theorems for the Spherical Scalar and Vector Wave Functions," Progress In Electromagnetics Research B, Vol. 4, 79-99, 2008.
doi:10.2528/PIERB07121203
References

1. Bruning, J. H. and Y. T. Lo, "Multiple scattering of EM waves by spheres, Part I — Multipole expansion and ray-optical solutions," IEEE Trans. Antennas Propagat., Vol. 19, No. 3, 378-390, May 1971.
doi:10.1109/TAP.1971.1139944

2. Kokkorakis, G. C., J. G. Fikioris, and G. Fikioris, "EM field induced in inhomogeneous dielectric spheres by external sources," Progress In Electromagnetics Research Symposium, 275-278, Cambridge, USA, March 26-29 2006.

3. Hansen, J. E. (ed.) "Spherical Near-field Antenna Measurements," Peter Peregrinus Ltd., 1988.

4. Greengard, L. and V. Rokhlin, "A new version of the fast multipole method for the Laplace equation in three dimensions," Acta Numerica, 229-269, 1997.

5. Chew, W. C. , J. M. Jin, E. Michielssen, J. M. Song (eds.) Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.

6. Gumerov, N. A. and R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, Elsevier, 2004.

7. Cheng, H., W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J.F.Ethridge, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao, "A wideband fast multipole method for the Helmholtz equation in three dimensions," J. Comput. Phys., Vol. 216, 300-325, 2006.
doi:10.1016/j.jcp.2005.12.001

8. Friedman, B. and J. Russek, "Addition theorems for spherical waves," Quart. Appl. Math., Vol. 12, 13-23, 1954.

9. Danos, M. and L. Maximon, "Multipole matrix elements of the translation operator," J. Math. Phys., Vol. 6, No. 5, 766-778, May 1965.
doi:10.1063/1.1704333

10. Stein, S., "Addition theorems for spherical wave functions," Quart. Appl. Math., Vol. 19, No. 1, 15-24, 1961.

11. Cruzan, O. R., "Translational addition theorems for spherical vector wave functions," Quart. Appl. Math., Vol. 20, No. 1, 33-40, 1962.

12. Borghese, F., P. Denti, G. Toscano, and O. I. Sindoni, "An addition theorem for vector Helmholtz harmonics," J. Math. Phys., Vol. 21, No. 12, 2754-2755, December 1980.
doi:10.1063/1.527572

13. Felderhof, B. U. and R. B. Jones, "Addition theorems for spherical wave solutions of the vector Helmholtz equation," J. Math. Phys., Vol. 28, No. 4, 836-839, April 1987.
doi:10.1109/8.7220

14. Wittmann, R. C., "Spherical wave operators and the translation formulas," IEEE Trans. Antennas Propagat., Vol. 36, No. 8, 1078-1087, August 1988.

15. Chew, W. C., Waves and Fields in Inhomogeneuos Media, IEEE Press, 1995.
doi:10.1163/156939393X00787

16. Chew, W. C. and Y. M. Wang, "Efficient ways to compute the vector addition theorem," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 5, 651-665, 1993.
doi:10.1109/8.542073

17. Kim, K. T., "The translation formula for vector multipole fields and the recurrence relations of the translation coefficients of scalar and vector multipole fields," IEEE Trans. Antennas Propagat., Vol. 44, No. 11, 1482-1487, November 1996.
doi:10.2528/PIER04040601

18. Kim, K. T., "Symmetry relations of the translation coefficients of the scalar and vector spherical multipole fields," Progress In Electromagnetics Research, Vol. 48, 45-66, 2004.
doi:10.1109/TAP.2007.910358

19. Kim, K. T., "Efficient recursive generation of the scalar spherical multipole translation matrix," IEEE Trans. Antenna Propagat., Vol. 55, No. 12, 3484-3494, 2007.

20. Chew, W. C., "Vector addition theorem and its diagonalization," Commun. Comput. Phys., Vol. 3, No. 2, 330-341, February 2008.
doi:10.1137/S0036142902405655

21. Sarvas, J., "Performing interpolation and anterpolation entirely by fast Fourier transform in the 3-D multilevel fast multipole algorithm," SIAM J. Numer. Anal., Vol. 41, No. 6, 2180-2196, 2003.
doi:10.2528/PIER05021001

22. Wallen, H. and J. Sarvas, "Translation procedures for broadband MLFMA," Progress In Electromagnetics Research, Vol. 55, 47-78, 2005.

23. Wang, P., Y. J. Xie, and R. Yang, "Novel pre-corrected multilevel fast multipole algorithm for electrical large radiation problem," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1733-1743, 2007.
doi:10.2529/PIERS060907051636

24. Wallen, H., "Improved interpolation of evanescent plane waves for Fast Multipole Methods," PIERS Online, Vol. 3, No. 6, 764-766, 2007.

25. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, 1999.

26. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

27. Colton, D. and R. Kress, Inverse Acoustic and Elelctromagnetic Scattering Theory, Springler-Verlag, 1998.
doi:10.1063/1.1666629

28. Devaney, A. J. and E. Wolf, "Multipole expansions and plane wave representations of the electromagnetic field," J. Math. Phys., Vol. 15, No. 2, 234-244, February 1974.

29. Abramowitz, M. and I. A. Stegun (eds.), Handbook of Mathematical Functions, Dover Publications, 1970.
doi:10.1002/1098-2760(20000720)26:2<105::AID-MOP11>3.0.CO;2-W

30. Zhao, J.-S. and W. C. Chew, "Applying matrix rotation to the three-dimensional low-frequency multilevel fast multipole algorithm," Microwave Opt. Technol. Lett., Vol. 26, No. 2, July 2000.