Vol. 80
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-12-18
A Novel FDTD Approach Featuring Two-Level Parallelization on PC Cluster
By
Progress In Electromagnetics Research, Vol. 80, 393-408, 2008
Abstract
To improve the parallel efficiency in the case of the finegrained FDTD computing on PC cluster, the concept of "two level parallelization on PC cluster" is presented, and a high performance MPI-OpenMP hybrid FDTD algorithmis developed. In the hybrid algorithm, MPI is used in conjunction with OpenMP multithreading to achieve two level parallelismof the data and tasks at the basis of the domain decomposition FDTD method. Besides, to enhance the flexibility of the parallel FDTD, the interpolation between subspaces is also discussed. The simulation example of a printed antenna for automobile is given. Computations are performed for different numbers of PCs and contrasted with two conventional parallel FDTD algorithms on PC cluster. The results show that with the decrease of the computational granularity on each computer, the novel algorithm is more efficient, and moreover, it can also lessen the influence of the sub-domains virtual topology on the parallel FDTD performance.
Citation
Yu Liu, Zheng Liang, and Ziqiang Yang, "A Novel FDTD Approach Featuring Two-Level Parallelization on PC Cluster," Progress In Electromagnetics Research, Vol. 80, 393-408, 2008.
doi:10.2528/PIER07120703
References

1. Ding, W., Y. Zhang, P. Y. Zhu, et al. "Study on electromagnetic problems involving combinations of arbitrarily oriented thin-wire antennas and inhomogeneous dielectric objects with a hybrid MoM-FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1519-1533, 2006.
doi:10.1163/156939306779274255

2. Tang, L. and T. S. Ibrahim, "On the radio-frequency power requirements of human MRI," PIERS Online, Vol. 3, No. 6, 886-889, 2007.
doi:10.2529/PIERS061007225757

3. Yang, D. K., X. Y. Hu, S. Y. Zhang, et al. "Numerical simulation for the effective conductivity of composite medium in high frequency," PIERS Online, Vol. 3, No. 4, 457-461, 2007.
doi:10.2529/PIERS061005091713

4. Xu, J., P. Chen, Y. Shi, et al. "Numerical study on twodimensional magnetic photonic crystals made of magnetized ferrites," PIERS Online, Vol. 3, No. 3, 305-307, 2007.
doi:10.2529/PIERS060906233818

5. Wang, Q. Y., J. Wang, and S. L. Zhang, "Numerical simulation analysis of an optical virtual probe based on surface plasmon polaritonic band-gap structures," PIERS Online, Vol. 3, No. 1, 7-12, 2007.
doi:10.2529/PIERS060903234639

6. Liu, Y., Z. Q. Yang, Z. Liang, et al. "A memory-efficient strategy for the FDTD implementation applied to the photonic crystals problems," PIERS Online, Vol. 3, No. 4, 374-378, 2007.
doi:10.2529/PIERS061002103800

7. Gorodetsky, D. A. and P. A. Wilsey, "Reduction of FDTD simulation time with modal methods," PIERS Online, Vol. 2, No. 5, 510-513, 2006.
doi:10.2529/PIERS050916153851

8. Huang, X. L., L. Xia, and H. Y. Chen, "Waveguide analysis using multiresolution time domain method," PIERS Online, Vol. 2, No. 6, 559-561, 2006.
doi:10.2529/PIERS060719113106

9. Guiffaut, C. and K. Mahdjoubi, "A parallel FDTD algorithm using the MPI library," IEEE Antennas and Propagation Magazine, Vol. 43, No. 2, 94-103, 2001.
doi:10.1109/74.924608

10. Zhang, Y., J. Song, and C. H. Liang, "MPI based parallelized locally conformal FDTD for modeling slot antennas and new periodic structures in microstrip," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 10, 1321-1335, 2004.
doi:10.1163/1569393042954974

11. Yu, W., Y. Liu, T. Su, et al. "A robust parallel conformal finitedifference time-domain processing package using the MPI library," IEEE Antennas and Propagation Magazine, Vol. 47, No. 3, 39-59, 2005.
doi:10.1109/MAP.2005.1532540

12. Chen, K., X. Chen, and K. Huang, "A novel microstrip dipole antenna with wideband and end-fire properties," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1679-1688, 2007.

13. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3- D buried objects using parallel genetic algorithmcom bined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

14. Zheng, K., D. Ge, and N. Ge, "Parallel FDTD computing for 3D EM scattering problemand its speedup factor analysis," Chinese Journal of Radio Science, Vol. 19, No. 6, 767-771, 2004.

15. Feng, J. and X. Cheng, "A study of parallel FDTD for simulating complex antennas on a cluster system," Asia-Pacific Microwave Conference Proceedings, 4-7, 2005.

16. Niikura, K., R. Kokubo, K. Southisombath, et al. "On analysis of planar antennas using FDTD method," PIERS Online, Vol. 3, No. 7, 1019-1023, 2007.
doi:10.2529/PIERS061002234141

17. Chai, W. W., X. J. Zhang, and J. B. Liu, "A novel wideband antenna design using U-slot," PIERS Online, Vol. 3, No. 7, 1067-1070, 2007.
doi:10.2529/PIERS060904224039

18. Losito, O., "Design of conformal tapered leaky wave antenna," PIERS Online, Vol. 3, No. 8, 1316-1320, 2007.
doi:10.2529/PIERS070403144715

19. Yee, K. S., J. S. Chen, and A. H. Chang, "Conformal finitedifference time-domain (FDTD) with overlapping grids," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 9, 1068-1075, 1992.
doi:10.1109/8.166532

20. Sha, W., X. L. Wu, and M. S. Chen, "A diagonal split-cell model for the high-order symplectic FDTD scheme," PIERS Online, Vol. 2, No. 6, 715-719, 2006.
doi:10.2529/PIERS060903035033

21. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 12, 1630-1639, 1996.
doi:10.1109/8.546249

22. Xu, F. and W. Hong, "Domain decomposition FDTD algorithm for the analysis of a new type of E-plane sectorial horn with aperture field distribution optimization," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 426-434, 2004.
doi:10.1109/TAP.2004.823878

23. Sarkar, A.N. Benabbou, and R. Ghanem, "Domain decomposition of stochastic PDES and its parallel implementation," 20th International Symposium on High-Performance Computing in an Advanced Collaborative Environment, 14-17, 2006.

24. Liang, D., J. Feng, and X. Chen, "A study of efficient parallel FDTD methods on cluster systems," Journal of Sichuan University (Natural Science Edition), Vol. 43, No. 3, 549-554, 2006.

25. Drosinos, N. and N. Koziris, "Performance comparison of pure MPI vs hybrid MPI-OpenMP parallelization models on SMP clusters," 18th International Parallel and Distributed Processing Symposium, 26-30, 2004.

26. Su, M. F., I. El-Kady, D. A. Bader, et al. "A novel FDTD application featuring OpenMP-MPI hybrid parallelization," Proceedings of International Conference on Parallel Processing, 15-18, 2004.

27. Akhter, S., J. Roberts, J. Reinders, et al. Multi-Core Programing Increasing Performance through Software Multi-threading, Intel Press Business Unit, 2004.

28. Zhang, Y., W. Ding, and C. H. Liang, "Study on the optimum virtual topology for MPI based parallel conformal FDTD algorithmon PC clusters," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1817-1831, 2005.
doi:10.1163/156939305775696856