Vol. 80
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-12-05
Microwave/Millimeter-Wave Generation Using Multi-Wavelength Photonic Crystal Fiber Brillouin Laser
By
Progress In Electromagnetics Research, Vol. 80, 307-320, 2008
Abstract
An all-optical microwave generation using a multiwavelength photonic crystal fiber Brillouin laser is presented. A highly nonlinear photonic crystal fiber with the length of 25m is used as Brillouin gain medium. A Fabry-Perot cavity with two fiber Bragg gratings as reflectors are designed in order to enhance the Brillouin conversion efficiency. The fiber Bragg gratings can be used to selectively excite the jth-order Stokes' wave and suppress other order Stokes' waves. The mechanism for microwave/millimeterwave generation is theoretically analyzed. In the experiment, both 9.788 GHz and 19.579 GHz microwave signals are achieved through mixing the pump wave with the first-order and the second-order Stokes' waves.
Citation
Guo-Feng Shen, Xian-Min Zhang, Hao Chi, and Xiao-Feng Jin, "Microwave/Millimeter-Wave Generation Using Multi-Wavelength Photonic Crystal Fiber Brillouin Laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.
doi:10.2528/PIER07112202
References

1. Qiao, S., T. Jiang, L. X. Ran, and K. S. Chen, "Ultra-wide band noise-signal radar utilizing microwave chaotic signals and chaos synchronization," PIERS Online, Vol. 3, No. 8, 1326-1329, 2007.
doi:10.2529/PIERS070417101142

2. Georgiadou, E. M., A. D. Panagopoulos, and J. D. Kanellopoulos, "Millimeter wave pulse propagation through distorted raindrops for los fixed wireless access channels," J. of Electromagn. Waves and Appl., Vol. 20, No. 9, 1235-1248, 2006.
doi:10.1163/156939306777442953

3. Osipov, A. V., I. T. Iakubov, A. N. Lagarkov, S. A. Maklakov, D. A. Petrov, K. N. Rozanov, and I. A. Ryzhikov, "Multi-layered Fe films for microwave applications," PIERS Online, Vol. 3, No. 8, 1303-1306, 2007.
doi:10.2529/PIERS070320070112

4. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Dielectric studies of corn syrup for applications in microwave breast imaging," Progress In Electromagnetics Research, Vol. 59, 175-186, 2006.
doi:10.2528/PIER05072801

5. Ku, H. S., "Productivity improvement of composites processing through the use of industrial microwave technologies," Progress In Electromagnetics Research, Vol. 66, 267-285, 2006.
doi:10.2528/PIER06111901

6. Pourova, M. and J. Vrba, "Analytical solutions to the applicatiors for microwave textile drying by means of zigzag method," PIERS Online, Vol. 3, No. 8, 1204-1207, 2007.
doi:10.2529/PIERS070220121009

7. Bauer, S., O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, "Optical microwave source," Electron. Lett., Vol. 38, No. 7, 334-335, 2002.
doi:10.1049/el:20020228

8. Biswas, B. N., "Optical generation of mm-wave signal with wide linewidth lasers for broadband communications," PIERS Online, Vol. 3, No. 7, 1058-1063, 2007.
doi:10.2529/PIERS060828055517

9. Biswas, B. N., A. Banerjee, A. Mukherjee, and S. Kar, "Lightwave technique of mm-wave generation for broadband mobile commmunication," PIERS Online, Vol. 3, No. 7, 1071-1075, 2007.
doi:10.2529/PIERS061004061503

10. Hyodo, M., K. S. Abedin, N. Onodera, and M. Watanabe, "Beatsignal synchronization for optical generation of millimetre-wave signals," Electron. Lett., Vol. 39, No. 24, 1740-1741, 2003.
doi:10.1049/el:20031167

11. Wu, J. W. and F. G. Luo, "Generation of high repetition rate picosecond pulse train based on ultra-small silicon waveguide," Progress In Electromagnetics Research, Vol. 75, 163-170, 2007.
doi:10.2528/PIER07060102

12. Brunel, M., F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, "High-spectral purity RF beat note generated by a two frequency solid-state laser in a dual thermooptic and electrooptic phaselocked loop," IEEE Photon. Technol. Lett., Vol. 16, No. 3, 870-872, 2004.
doi:10.1109/LPT.2004.823757

13. Meng, X. J. and J. Menders, "Optical generation of microwave signals using SSB-based frequency-doubling scheme," Electron. Lett., Vol. 39, No. 1, 103-105, 2003.
doi:10.1049/el:20030096

14. Sun, J., Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett., Vol. 18, No. 24, 2587-2589, 2006.
doi:10.1109/LPT.2006.887336

15. Leng, J. S., Y. C. Lai, W. Zhang, and J. A. R. Williams, "A new method for microwave generation and data transmission using DFB laser based on fiber Bragg gratings," IEEE Photon. Technol. Lett., Vol. 18, No. 16, 1729-1731, 2006.
doi:10.1109/LPT.2006.879925

16. Kitayama, K. I., "Highly stabilized millimeter wave generation by using fiber-optic frequency-tunable comb generator," J. Lightw. Technol., Vol. 15, No. 5, 883-893, 1997.
doi:10.1109/50.580832

17. Deng, Z. C. and J. P. Yao, "Photonic generation of microwave signal using a rational harmonic mode-locked fiber ring laser," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 2, 763-767, 2006.
doi:10.1109/TMTT.2005.862624

18. Chen, X. F., Z. C. Deng, and J. P. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinalmode fiber ring laser," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 2, 804-809, 2006.
doi:10.1109/TMTT.2005.863064

19. Schneider, T. and M. Junker, "and D. Hannover. Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems," Electron. Lett., Vol. 40, No. 23, 1500-1502, 2004.
doi:10.1049/el:20046461

20. Smith, S. P., F. Zarinetchi, and S. Ezekiel, "Narrow-linewidth stimulated Brillouin fiber laser and applications," Opt. Lett., Vol. 16, No. 6, 393-395, 1991.

21. Yao, X. S., "High-quality microwave signal generation by use of brillouin scattering in optical fibers," Opt. Lett., Vol. 22, No. 17, 1329-1331, 1997.

22. Shen, Y. C., X. M. Zhang, and K. S. Chen, "All-optical generation of microwave/millimeter-wave using a two-frequency Bragg grating based Brillouin fiber laser," J. Lightw. Technol., Vol. 23, No. 5, 1860-1865, 2005.
doi:10.1109/JLT.2005.846910

23. Shen, Y. C., X. M. Zhang, and K. S. Chen, "Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering," IEEE Photon. Technol. Lett., Vol. 17, No. 6, 1277-1279, 2005.
doi:10.1109/LPT.2005.846491

24. Guenneau, S., A. Nicolet, F. Zolla, and S. Lasquellec, "Numerical and theoretical study of photonic crystal fibers," Progress In Electromagnetics Research, Vol. 41, 271-305, 2003.

25. Song, W., Y. Y. Zhao, Y. Bao, S. G. Li, Z. Y. Zhang, and T. F. Xu, "Numerical simulation and analysis on mode property of photonic crystal fiber with high birefringence by fast multipole method," PIERS Online, Vol. 3, No. 6, 836-841, 2007.
doi:10.2529/PIERS060910211527

26. de Matos, C. J. S., J. R. Taylor, and K. P. Hansen, "All-fibre Brillouin laser based on holey fibre yielding comb-like spectra," Opt. Commun., Vol. 238, No. 1-3, 185-189, 2004.
doi:10.1016/j.optcom.2004.04.031

27. Singh, S. P., R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, Vol. 74, 379-405, 2007.
doi:10.2528/PIER07051102

28. Crutcher, S., A. Biswas, M. D. Aggarwal, and M. E. Edwards, "Oscillatory behavior of spatial solitons in tow-dimensional waveguides and stationary temporal power law solitons in optical fibers," J. of Electromagn. Waves and Appl., Vol. 20, No. 6, 761-772, 2006.
doi:10.1163/156939306776143361

29. Singh, S. P. and N. Singh, "Nonlinear effects in optical fibers: Origin, management, and applications," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.
doi:10.2528/PIER07040201

30. Ogusu, K., "Analysis of steady-state cascaded stimulated Brillouin scattering in a fiber Fabry-Perot resonator," IEEE Photon. Technol. Lett., Vol. 14, No. 7, 947-949, 2002.
doi:10.1109/LPT.2002.1012394