Vol. 78
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-09-20
Tunability of Granular Ferroelectric Dielectric Composites
By
, Vol. 78, 189-207, 2008
Abstract
Electrical tunability of a composite consisting of small ferroelectric spheres randomly dispersed into a dielectric background is studied. A new method to calculate the effective permittivity of such a nonlinear composite is introduced. The method is based on the Bruggeman effective medium theory and a specific model for the nonlinear permittivity of the ferrite. The resulting tunability (defined as a measure of the change in the permittivity due to the bias field) is a continuous function of the volume fraction of the ferroelectric material phase in the composite. As an example,SrTiO3 is studied with two different nontunable background materials.
Citation
Liisi Jylha, and Ari Sihvola, "Tunability of Granular Ferroelectric Dielectric Composites," , Vol. 78, 189-207, 2008.
doi:10.2528/PIER07081502
References

1. Guerin, F., "Micr owave chiral materials: a reviw of experimental studies and some results on composites with ferroelectric ceramic inclusions," Progress In Electromagnetics Research, Vol. 9, 219-263, 1994.

2. Huang. C.-C. "Analysis of multiconduction transmission lines with nonlinear terminations in frequency domain," J. of Electromagn. Waves and Appl., Vol. 19, No. 8, 1069-10832005, 1069.
doi:10.1163/156939305775526142

3. Wang, X.-H. and B.-Z. Wang, "Generalized transmission line theory for parallel planar transmission lines," J. of Electromagn. Waves and Appl., Vol. 19, No. 9., 1171-1181, 2005.
doi:10.1163/156939305775526025

4. Sengupta, L. C. and S. Sengupta, "Breakthrough advantages in low loss,tunable dielectric materials," Mat. Res. Innovat., Vol. 2, 278-282, 1999.
doi:10.1007/s100190050098

5. Chen, Y., X. Dong, J. Li, and Y. Wang, "Dielectric properties of Ba0.6Sr0.4TiO3/Mg2SiO4/MgO composite ceramics," J. Appl. Phys., Vol. 98, 2005.

6. Tummala, R., "Ceramic and glass-ceramic packaging in the 1990s," J. Am. Cer. Soc., Vol. 74, 895-908, 1991.
doi:10.1111/j.1151-2916.1991.tb04320.x

7. Barnwell, P.W. Zhang, J. Lebowitz, K. Jones, N. MacDonald, C. Free, and Z. Tian, "An investigation of the properties of LTCC materials and compatible conductors for their use in wireless applications," Proc. International Symposium on Microelectronics, 659-664, 2000.

8. Hakeem, N. A., H. I. Abdelkader, N. A. El-sheshtawi, and I. S. Eleshmawi, "Sp ectroscopic,thermal and electrical investigations of PVDF films filled with BiCl3," J. Appl. Pol. Sci., Vol. 102, 2125-2131, 2006.
doi:10.1002/app.24135

9. Xu, H., J. Zhong, X. Liu, J. Chen, and D. Shen, "F erroelecric and switching behavior of poly(vinyliden fluoride-trifluoroethylene) copolymer ultrathin films with polypyrrole interface," Appl. Phys. Lett., Vol. 90, 2007.

10. Shynu, S. V., G. Augustin, C. K. Aanandan, P . Mohanan, and K. Vasudevan, "Design of compact reconfigurable dual frequency microstrip antennas using varactor diodes," Progress In Electromagnetics Research, Vol. 60, 197-205, 2006.
doi:10.2528/PIER05120101

11. Zheng, Q.-R., B.-Q. Lin, Y.-Q. Fu, and N.-C. Yuan, "Characteristics and applications of a novel compact spiral electromagnetic band-gap (EBG) structure," J. of Electromagn. Waves and Appl., Vol. 21, No. 2, 199-213, 2007.
doi:10.1163/156939307779378844

12. Lee, S.-W., Y. Kuga, and A. Ishimaru, "Quasi-static analysis of metamaterials with small tunable stacked split ring resonators," Progress In Electromagnetics Research, Vol. 51, 219-229, 2005.
doi:10.2528/PIER04020602

13. Irvin, P., J. Levy, R. Guo, and A. Bhalla, "Three-dimensional polarization imaging of (Ba,Sr)TiO3:MgO composites," Appl. Phys. Lett., Vol. 86, 2005.
doi:10.1063/1.1854722

14. Astafiev, K. F., V. O. Sherman, A. K. Tagantsev, and N. Setter, "Can the addition of a dielectric improve the figure of merit of a tunable material?'' J. Eur. Cer. Soc.," ``Can the addition of a dielectric improve the figure of merit of a tunable material? J. Eur. Cer. Soc., Vol. 23, 2381-2386, 2003.

15. Mokry, P., A. K. Tagantsev, and N. Setter, "Size effect on permittivity in ferroelectric polydomain thin films," Phys. Rev. B, Vol. 70, 2004.
doi:10.1103/PhysRevB.70.172107

16. Sherman, V. O., A. K. Tagantsev, N. Setter, D. Iddles, and T. Price, "F erroelectric-dielectric tunable composites," J. Appl. Phys., Vol. 99, 2006.
doi:10.1063/1.2186004

17. Stround, D. and P. M. Hui, "Nonlinear susceptibilities of granular matter," Phys. Rev. B, Vol. 37, 8719-8724, 1988.
doi:10.1103/PhysRevB.37.8719

18. Stround, D. and V. E. Wood, "Decoupling approximation for the nonlinear-optical response of composite media," J. Opt. Soc. Am. B, Vol. 6, 778-786, 1989.

19. Bergman, D. J., "Nonlinear behavior and 1/f noise near a conductivity threshold: Effects of local microgeometry," Phys. Rev. B, Vol. 39, 4589-4609, 1989.

20. Vendik, O. G. and S. P. Zubko, "Mo deling the dielectric response of incipient ferroelectrics," J. Appl. Phys., Vol. 82, 4475-4483, 1997.
doi:10.1063/1.366180

21. Garboczi, E. J., K. A. Snyder, and J. F. Douglas, "Geometrical percolation threshold of overlapping ellipsoids," Phys. Rev. E, Vol. 52, 819-828, 1995.
doi:10.1103/PhysRevE.52.819

22. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE ElectromagneticWaves Series 47, 1999.

23. Vendik, I. B., O. G. Vendik, and E. L. Kollberg, "Comm utation quality factor of two-state switchable devices," IEEE Trans. on Micr. Theor. and Techn., Vol. 48, 802-808, 2000.
doi:10.1109/22.841874

24. Chowdhuri, P.T. Bement, C. Espinoza, and G. Weeks, "DC break down strength of dielectric materials at gyrogenic temperatures," Proc. of 7th IEEE/PES Transmission and Distribution Conference and Exposition, 140-147, 1979.

25. Duan, C., R. F. Sabirianov, W. Mei, S. S. Jaswal, and E. Y. Tsymbal, "In terface effect on ferroelectricity at the nanoscale," Nano Letters, Vol. 6, 483-487, 2006.
doi:10.1021/nl052452l

26. Sherman, V. O.A. K. Tagantsev, and N. Setter, "T unability and loss of the ferroelectric-dielectric composites," IEEE International Ultrasonics, 33-38, 2004.

27. Gallop, J. and L. Hao, "Single crystal microwave dielectrics at low temperature: losses and non-linearities," J. Eur. Cer. Soc., Vol. 23, 2367-2373, 2003.
doi:10.1016/S0955-2219(03)00341-8

28. Herring, C., J. Appl. Phys., and Vol. 31, 1939, Vol. 31, 1960., 1960.

29. Jacob, V., J. Mazierska, K. Leong, and J. Krupka, "Micro wave properties of low-loss polymers at cryogenic temperatures," IEEE Trans. Micr. Theor. Techn., Vol. 50, 474-480, 2002.
doi:10.1109/22.982226