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Abstract—Electrical tunability of a composite consisting of small
ferroelectric spheres randomly dispersed into a dielectric background
is studied. A new method to calculate the effective permittivity of
such a nonlinear composite is introduced. The method is based on
the Bruggeman effective medium theory and a specific model for the
nonlinear permittivity of the ferrite. The resulting tunability (defined
as a measure of the change in the permittivity due to the bias field) is a
continuous function of the volume fraction of the ferroelectric material
phase in the composite. As an example, SrTiO3 is studied with two
different nontunable background materials.

1. INTRODUCTION

Tunability describes the extent in which the permittivity of the
material can be controlled using external biasing electric field. It is
defined as the ratio between the maximum and minimum permittivities
of the tunable material. Tunable materials are typically ceramics
with very high relative permittivity values, up to thousands. In
[1], the high permittivity of a ferroelectric ceramic is applied to
create chiral particles. On the other hand, high permittivity can
be disadvantageous: it can increase cross talking in integrated
circuits and to reduce signal speed [2, 3]. One possibility to avoid
high permittivities is to construct composites where nontunable low-
permittivity dielectrics form the other component phase [4, 5]. Such
materials can be made, for example, by compressing ceramic powders
of dielectrics and tunable ferroelectrics.

Composites can be also useful in the design of tunable materials
with modified mechanical properties. For some applications such as for
low-temperature co-firing ceramic material (LTCC) technology [6, 7]
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certain mechanical properties for tape materials are required. Tunable
ferroelectric polymers, such as poly(vinylidene fluoride) (PVDF) [8, 9]
are typically lossy materials with long switching time which limits their
applicability at microwave frequencies. On the other hand, a composite
consisting of ferroelectric inclusions in a polymer matrix can provide a
flexible sheet with tunable permittivity and at the same time maintain
the tunability properties of the ceramic. Tunable composites can be
applied in the design of, for example, dual band antennas [10], tunable
electromagnetic band-gap (EBG) structures [11], or tunable split ring
resonators [12].

In Fig. 1 an illustration of an example of a tunable composite
material is presented. There black inclusions of tunable material
are randomly dispersed into a white nontunable background. To
highlight the possibility that the composite can be completely filled
with black inclusions, the boundaries between white inclusions are
marked. The illustration corresponds, for example, to a composite
that is constructed by compressing two ceramic powders. However, in
the case of ceramic-polymer composite, there would be no boundaries
between white inclusions. Although a crude model, the illustration in
Fig. 1 seems plausible geometry for our approach, in light of the study
of a BST/MgO-composite in [13].

Although there are several studies highlighting the promising
experimental results with tunable composites, the theoretical
background of such composites has not been widely analyzed. The
studies [14–16], which base on earlier nonlinearity models for dielectrics
[17–19] are based on a Bruggeman type of effective medium theory.
There the tunability of the composite material has been modeled for
low volume filling ratio of nontunable sperical inclusions in a tunable
background. The main problem is that the tunability of the composite
cannot be modeled with all volume fractions of tunable material. In
particular, the tunability as a function of volume fraction of tunable
phase has a singularity which is not in full agreement with experimental
studies.

The present study provides a new approach to this problem of
modeling nonlinear composites. Here, the effective medium approach is
similar to that in these earlier studies, but the effect of the nonlinearity
is taken into account in a different way. The result is a stable function
without any singularities which can be applied without restrictions to
the volume fraction of tunable material.

The new approach is based on the Bruggeman effective medium
theory and a nonlinear model for the permittivity of the ferroelectric.
The nonlinear model presented in [20] is used for the permittivity
tunable material phase in the composite, due to its good agreement
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with measurements. This nonlinearity will result in the tunability of
the composite through the homogenization algorithm. The resulting
tunability of the composite is a function of the volume fraction of
inclusions, the temperature, the average size of inclusions, and the
biasing electric field. The resulting tunability and permittivity are
nonresonating continuous functions. The method can be applied with
other models for the tunable material phase as well.

For simplicity, in the analysis to follow, tunable inclusions are
modeled as spheres in order to reduce the amount of free parameters
in characterizing the mixture. However, the method can as well be
applied to ellipsoidal geometries. In such a case, the internal electric
field that excites the particles is dependent on their geometrical shape
parameters.

Figure 1. Homogenization of a two phase mixture of black inclusions
with permittivity εi in background with εe. The effective permittivity
εeff is dependent on the external bias field.

2. THEORY

This section describes how the effective permittivity of a composite
consisting of tunable and nontunable materials can be determined and
calculated with knowledge of the properties of the materials that it
is composed of. The complex properties of the nonlinearity of the
tunable permittivity will be transformed into the nonlinear properties
of the composite. To model the permittivity of the tunable material
we use the model presented in [20] which is outlined in Appendix A.
It is a nonlinear function of the electric field inside the tunable phase.
However, the analysis to follow is general in the sense that instead of
the model presented in Appendix A, any other model describing the
permittivity of a tunable material as a function of the electric field can
be used. Also a model for the permittivity of a polycrystal dielectric
ceramic is presented in Appendix A. The Bruggeman effective medium
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theory is used to calculate the field in the tunable material as well
as the effective permittivity of the composite. The tunability of the
composite can be calculated from the effective permittivity.

2.1. Homogenization

The effective permittivity εeff of a mixture is a macroscopic quantity
describing the average permittivity over a large sample of composite
material. It can be defined for time-varying fields with sufficiently low
frequencies, such that the wavelength is considerably smaller than the
average inhomogeneities in the composite. There are several theories
to describe the effective permittivity of a randomly heterogeneous
mixture. In this study, a Bruggeman effective medium theory is chosen
because of it many appealing properties. It averages the permittivity
around each inclusion and the electric field inside the sphere depends
on the volume fraction of the spheres in the mixture.

As a result, the Bruggeman effective medium theory for spheres
has a percolation threshold at volume filling ratio 1/3. The percolation
threshold is the volume filling ratio where the effective permittivity as
a function of volume fraction of inclusions changes rapidly. For this
amount of filling, randomly dispersed spheres become connected [21].
Another advantage of the Bruggeman mixing theory is that it gives a
reasonable estimate for the effective permittivity of the mixture with all
volume fractions of inclusions. This is a consequence of the particular
symmetry property of the Bruggeman equation: it treats both phases
in equal fashion. The equation reads [22]

f
εf − εeff

εf + 2εeff
+ (1 − f)

εd − εeff

εd + 2εeff
= 0 (1)

where f is the volume filling ratio of ferroelectric material in the
composite, εd is the permittivity of the dielectric phase and εf is the
permittivity of the ferroelectric material. Permittivities of materials
consist of real and imaginary part: εd = εd,r(1 − j tan δd) and εf =
εf,r(1−j tan δf ) where εd,r and εf,r are the real permittivities and tan δd

and tan δf are the loss tangents of materials. For tunable composites,
at least one of the phases has a nonlinear dielectric response. Here, the
permittivity of the ferroelectric depends on the internal electric field
according to the model presented in Appendix A.

The first term in Eq. (1) represents the polarizability of a
ferroelectric sphere with permittivity εf in the background with
permittivity εeff weighted with the volume fraction of ferroelectric
material. The second term represents the polarizability of a dielectric
sphere with permittivity εd in the dielectric background weighted with
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the volume fraction of material εd. With small volume fractions,
the ferroelectric material is dispersed as spheres into the dielectric
background and with large volume fraction of ferroelectric material,
dielectric spheres are randomly distributed into the ferroelectric
background.

The classical Bruggeman effective medium theory is derived for
linear dielectrics. Here the Bruggeman model is extended for nonlinear
spheres by assuming that the internal field depends linearly on the
external field, but the permittivity of the spheres depends nonlinearly
on the same internal field Ei. The internal field is determined by the
applied external biasing field (which is much stronger in amplitude
than the time-dependent signal field), and because of the spherical
inclusion shape, it reads

Ei =

∣∣∣∣∣
3εeff

2εeff + εf

∣∣∣∣∣ EB (2)

where EB is the applied biasing field to the whole sample. By
following the logic behind the Bruggeman effective medium theory,
the surrounding space around the ferroelectric sphere is homogenized
to have the effective permittivity εeff . With very small volume filling
ratios of ferroelectric material, the internal field of the ferroelectric
approaches the internal field of an isolated sphere in the background
material εd. With very large volume filling ratios the internal field
approaches the average biasing field over the whole sample. Between
these two extremes, the internal field is a continuous function if εf is
continuous.

Effective permittivity of a ferroelectric–dielectric composite can be
solved with Eq. (1) for the effective permittivity, Eq. (2) for the internal
field and Eq. (A1) for the permittivity of the ferroelectric. Fortunately,
this set of three non-linear equations is relative straightforward to solve.
It can be solved iteratively with initial value εeff = εd in f = 0. Then
the volume fraction f is increased and the corresponding effective
permittivity is solved recursively using the previous solution as an
initial value. For simplification, the loss tangent is assumed to be
constant.

The electric field inside the sphere is constant, as it is in a thin
sheet of ferroelectric material between capacitor plates. Therefore it is
assumed that in the model for the ferroelectric (A1), the height of the
sheet is replaced with the average diameter of spheres.
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2.2. Tunability and the Figure of Merit

The tunability of the composite is a very central parameter for
nonlinear materials. It is defined as the ratio of the maximum to the
minimum permittivity:

n = εeff(0)/εeff(Eb) (3)

where εeff(0) is the permittivity without the biasing field and εeff(Eb)
is the permittivity with the biasing electric field. The permittivity
with the biasing field is smaller than without the biasing field. Both of
these are functions of the volume fraction of ferroelectric inclusions. In
addition to large tunability, it is usually desirable to have low losses. A
figure of merit for a tunable material which measures both quantities
at the same time is defined as [23]

K =
(n − 1)2

n tan δ0 tan δE
(4)

where tan δE is the loss tangent of the composite with the biasing field
and tan δ0 is the loss tangent without the biasing field. This is so-
called Quality Factor of a Tunable Component (QFTC), which is now
applied to a tunable composite.

3. RESULTS

In this section two tunable composites are studied. The ferroelectric
phase is SrTiO3 in both cases. The other phase in the first case is
polymer (PTFE), and in the other it is another ceramic (rutile). PTFE
(also known as Teflon) was chosen because of its low losses and high
breakdown voltage, reported as high as 2000 kV/cm [24] at cryogenic
temperatures. Rutile has also small losses but its permittivity is higher
than that of PTFE. Both composites are studied at temperature 77 K,
where SrTiO3 possesses ferroelectric behavior. Models and parameters
for the used materials are presented in Appendix A.

3.1. SrTiO3/PTFE-polymer Composite

SrTiO3/PTFE-polymer composite consists of ceramic and polymer
phases. If there are significant amounts of polymer in the mixture,
the elastic properties of the composite are very different from the
ferroelectric and the composite may be made mechanically flexible. In
addition, since the permittivity of PTFE is low (εd = 2.1), we would be
able to produce a composite with effective permittivity much smaller
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Figure 2. Effective permittivity (a) and tunability (b) of the
composite as a function of volume fraction of SrTiO3 in a PTFE-
polymer matrix. In (a), the upper curves corresponds to the effective
permittivity without the biasing field and the lower curves with the
biasing field.

than that of SrTiO3. The dielectric properties and tunability of the
composite are calculated using the principles of the previous chapter.

The effective permittivity as a function of volume fraction of
SrTiO3 in the composite is presented in Fig. 2(a) both for the
biasing electric field strength EB = 50 kV/cm and without the biasing
field. Three different diameter sizes for the ferroelectric powder
are shown. The upper curve for each inclusion size represents the
effective permittivity without the biasing field. For high volume filling
ratios of ferroelectric effective permittivity increases as the inclusion
size increases. This is because of the size dependent model for the
permittivity of the ferroelectric. The effective permittivity of the
mixture with f = 1 gives the same value as the ferroelectric model
for the same inclusion size. For low volume filling ratios the effective
permittivity seems to be virtually the same as for the PTFE polymer.
The permittivity starts to increase with the volume filling ratio of 1/3,
which is the percolation threshold. The permittivity of SrTiO3 spheres
is much larger than that of the PTFE. Therefore the electric field inside
disconnected spheres is virtually zero, and hence the external biasing
field does not change the permittivity of ferroelectric spheres.

In Fig. 2(b) the tunability for the same composites as in Fig. 2(a)
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are presented with the same biasing electric field. Both the tunability
and the effective permittivity depend on the size of ceramic inclusions.
This is a result of the size dependence of the model for SrTiO3, where
the permittivity is reduced for the small inclusions. The physical
reason is that the transition layer where the polarization of atoms
changes from minimum to the maximum value is not negligible for
small inclusions.
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Figure 3. Tunability of the composite as a function of volume fraction
of SrTiO3 in a PTFE-polymer matrix for varying biasing fields (a) and
temperatures (b).

In Fig. 3(a) the diameter for inclusions is kept constant d = 1µm,
but the tunability is shown for three different biasing fields. In
Fig. 3(b), the tunability is shown with EB = 50 kV/cm for three
different temperatures. The curves show that the SrTiO3/PTFE
composite is not tunable at volume filling ratios smaller than the
percolation threshold of f = 0.33 with any parameter combinations
for the temperature, biasing fields or the diameter for the ferroelectric
spheres.

In Fig. 4(a) losses for the composite with different inclusion sizes
are presented. Above percolation threshold, losses of the composite
are close to the losses of the pure ferroelectric material. In Figs. 4(b)–
5(b), all parameters are the same as in Figs. 2(b)–3(b), but now the
figure of merit is displayed instead of the tunability. Figure of merit
decreases more rapidly than the tunability when volume fraction of
polymer increases, because losses of the composite remain close to the
losses of the ferroelectric.
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Figure 4. Loss tangent (a) and the figure of merit (b) of the composite
as a function of volume fraction of SrTiO3 in a PTFE-polymer matrix
for different diameters for SrTiO3 inclusions.

0 0.5 1
0

2

4

6

8

10

12
x 10

6

Vol. frac.

K

 

 

d=1 µm
E

b
=50 Kv/cm

35 K
77 K
100 K

0 0.5 1
0

0.5

1

1.5

2

2.5

x 10
6

Vol. frac.

K

 

 

T=77 K
d=1 µm

50 kV/cm
30 kV/cm
10 kV/cm

(a) (b)

Figure 5. The figure of merit of the composite as a function of volume
fraction of SrTiO3 in a PTFE-polymer matrix for varying biasing
electric field (a) and temperature (b).
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3.2. SrTiO3/rutile Composite

In this section, the same analysis is performed for the ferroelectric-
rutile composites as in the previous section for PTFE-polymer
composites. Rutile (TiO2) is a ceramic material which causes
restrictions with the mechanical properties of the composite as
compared to the polymer matrix. However, rutile has a much higher
permittivity than PTFE, which helps to achieve tunability at lower
volume fractions of the ferroelectric phase. This is due to the fact
that the field inside the ferroelectric inclusions becomes higher (see
Eq. (2)). The low volume fraction load helps to reduce the overall
effective permittivity while maintaining at the same time a reasonable
tunability. Furthermore, rutile has smaller losses than the PTFE
polymer.

In Fig. 6(a) the effective permittivity for the SrTiO3/rutile
composite is presented with the same parameters as for PTFE in
Fig. 2(a). The electrical contrast between permittivities of rutile and
ferroelectric is smaller than for PTFE and ferroelectric. Therefore the
electric field can better penetrate to the ferroelectric material and the
permittivity increases more gradually than for the PTFE composite.
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Figure 6. Effective permittivity and tunability (b) of the composite as
a function of volume fraction of SrTiO3 in the SrTiO3/rutile composite.
In (a), the upper curves corresponds to the effective permittivity
without the biasing field and the lower curves with the biasing field.

The tunability is presented in Fig. 6(b)–Fig. 7(b). Unlike PTFE
composite, the rutile composite is tunable with volume filling ratios
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smaller than the percolation threshold f = 0.33. This is because
smaller contrast makes the electric biasing field nonzero inside the
tunable spheres.
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Figure 7. Tunability of the composite as a function of volume fraction
of SrTiO3 in the rutile/SrTiO3 composite for varying biasing fields (a)
and temperatures (b).

The figure of merit which is presented in Fig. 8(b)–Fig. 9(b) is also
highly improved compared to the PTFE composite. This is the result
of lower losses (Fig. 8(a)) and because of larger tunability than for the
PTFE composite. With very low filling ratios of the tunable material
in the composite, the figure of merit is very high in some cases. This
happens when the losses of the composite are closer to the losses of the
dielectric material, but there is some slight tunability in the composite.

4. DISCUSSION

In the previous section, two very different examples for SrTiO3

composites were treated: the ferroelectric was mixed either with
a PTFE polymer or with rutile ceramic. Tunability, effective
permittivity, and the figure of merit as functions of the volume fraction
of ferroelectric material were analyzed and illustrated.

The polymer composite allows the mechanical properties of the
ferroelectric to be modified and the permittivity can be reduced from
the high values of SrTiO3. However, the volume filling ratio of
the tunable material must be higher than the percolation threshold
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Figure 8. Loss tangent (a) and the figure of merit (b) of the composite
as a function of volume fraction of SrTiO3 in the SrTiO3/rutile
composite for different diameters for SrTiO3 inclusions.
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Figure 9. The figure of merit of the composite as a function of volume
fraction of SrTiO3 in the SrTiO3/rutile composite for varying biasing
electric field (a) and temperature (b).
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because of the low permittivity of the polymer. If some other shape
than spherical inclusions for the ferroelectric material are used, the
percolation threshold will be reduced. Hence the material can be made
tunable with smaller volume filling ratios of the ferroelectric phase.

On the other hand, the results showed that the rutile composite
does not have such a strong percolation behavior for any of the
parameters (effective permittivity, tunability, or figure of merit). This
is attractive because of the small amount of ferroelectric needed
while still achieving tunability. For example, the tunability of 1.1 at
T = 77 K and with inclusion size 10µm can be achieved with f = 0.4
volume filling ratio of SrTiO3 in the PTFE polymer matrix or f = 0.28
in the rutile matrix. The effective permittivity of the mixture is 160
with PTFE and 310 with rutile. The figure of merit is 3 · 105 with
PTFE and 2 · 106 with rutile. Although the effective permittivity is
smaller with PTFE matrix, the figure of merit is better with rutile,
thanks to the lower losses in rutile. Of course, a ceramic material with
smaller permittivity and loss tangent than rutile would be even better.

It is worth noting that the analysis of the present paper can
be used along with other models for the ferroelectric than the one
in Appendix A. This is because Eqs. (1) and (2) remain valid,
from which the effective permittivity can be solved, as long as the
permittivities of tunable (εd) and nontunable (εf ) phases are known.
Also the behavior of the nontunable phase of the composite can
be assumed to be temperature-dependent. Then the model can be
applied for compensating the possible temperature dependence of the
tunability. High-permittivity dielectrics might be especially suitable
for temperature compensation, because already a small amount of
ferroelectric can produce the effect of tunability and more freedom
remains for optimization.

The effect of the inclusion size should be considered only
indicative, because the model for the size-dependent permittivity of the
tunable material is originally derived for thin sheets instead of granular
inclusions. With the filling ratio of 100% of ferroelectric material, we
would expect the permittivity and the tunability to be dependent more
on the thickness of the whole ferroelectric sheet than the grain size.
Accordingly, a more sophisticated model would replace the grain size
d with a parameter describing the average thickness of ferroelectric
phase across the sample. This would be a function, dependent on the
volume filling ratio, with two limits: the grain size and the thickness
of the composite layer. The interface effect on the ferroelectricity at
the nanoscale have been studied in detail in [25].

The results in the present study differ from those in [14] and [26]
where the tunability was not found to reduce when adding nontunable
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material into the composite. There, also a strong resonance in the
tunability was reported around the volume fraction of 40 percent of
tunable material. In contrast, in the present study, adding nontunable
material reduces the tunability. The tunability is also a continuous
function without any nonphysical resonances. If nontunable spheres
are added into a tunable material (high volume filling ratios in the
figure), the electric field inside the spheres is enhanced, and compared
with the average, the field outside the spheres (within the ceramic
phase) is smaller. Hence the global tunability of the composite should
be reduced.

This fact has also been confirmed by the experimental studies
[4, 5] where it was found that addition of a small amount of nontunable
dielectric MgO to a tunable BST or BSTO material did not increase
the tunability. The addition MgO reduces the loss tangent and
permittivity of the composite. It is interesting that the observed
reduction in [4] was greater than the prediction in the present study.
From practical viewpoint, this makes such tunable composites even
more appealing.

5. CONCLUSIONS

A novel method to calculate the effective permittivity and tunability
of a composite of dielectric and tunable materials is presented. The
method is applicable for all mixing ratios, as long as one phase can be
approximated as randomly dispersed spheres. The Bruggeman effective
medium theory is combined with a model for the nonlinear permittivity
of a ferroelectric material (SrTiO3). In this study, the model presented
in [14] was used, but any other model for the permittivity of a
tunable material could be used as well. Because the model for the
ferroelectric is a size-dependent, also the effective permittivity of the
tunable composite depends on the size of tunable inclusions. Both
the effective permittivity and the tunability decreases when the size of
tunable inclusions decreases.

As examples, two different composites, SrTiO3/PTFE-polymer
and SrTiO3/TiO2-rutile, were studied. If the permittivity of the
nontunable dielectric phase is low (PTFE), the composite is tunable
with volume filling ratios of the tunable material larger than the
percolation threshold. When the dielectric phase has large permittivity
(TiO2), the tunability of the composite increases gradually as a
function of volume filling ratio of tunable material in the composite.
Hence, in that case the composite is tunable also below the
percolation threshold. With high permittivity dielectric combined
with ferroelectric phase, a tunable material with almost any effective
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permittivity between the permittivities of tunable and nontunable
phases can be achieved.
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APPENDIX A.

A.1. Permittivity of the Ferroelectric

The model for the relative permittivity of SrTiO3, used in this study,
has been taken from [14]. It is frequency-independent and reported
to be applicable up to frequency about 100 GHz. However, when
applied to a granular composite material, the high-frequency limit is
also determined by the grain size. The wavelength should be much
larger than the scale of inhomogeneities in the material in order to
avoid enhancement of scattering losses.

The real part of the relative permittivity of a ferroelectric depends
on the temperature and the biasing electric field inside the material [20]

εf,r(T, Eb) = ε00([(ξ2 + η3)1/2 + ξ]2/3 + [(ξ2 + η3)1/2 − ξ]2/3 − η + a2)−1

(A1)
where ε00 is the analog of the Curie-Weiss constant and parameter
ξ is a function of biasing electric field, parameter η is a function of
the temperature, and a is a parameter related to the thickness of the
ferroelectric layer. The parameter ξ is defined

ξ =
√

ξ2
B + ξ2

S (A2)

where ξS is the dispersion parameter of the material characterizing
the density of defects of the material and ξB is the normalized biasing
voltage

ξB = Ei/EN (A3)

where Ei is the biasing electric field in the material and EN is a
normalization constant of the material. If the ferroelectric material
is mixed with dielectric material, the bias field Ei that excites the
particles is calculated with the Bruggeman effective medium theory,
Eq. (2). The temperature parameter η is defined

η = (ΘF /TC)
√

1/16 + (T/ΘF )2 − 1 (A4)
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where T is the temperature of the ferroelectric, TC is the Curie
temperature, ΘF is analog to the Debye temperature of sublattice
oscillations that are responsible for the ferroelectric polarization.

Near the surface of the ferroelectric layer, the polarization changes
gradually from the maximum value towards the minimum. This
transition layer has an effect to the permittivity of a thin ferroelectric
sheet. This can be taken into account with parameter a:

a =
√

2ε00/αh (A5)

where the parameter α is related to the dispersion of the longitudinal
and transverse optical type oscillations of the crystal lattice and h is
the thickness of the ferroelectric layer.

In this study, spherical illusions were considered. Therefore
instead of the thickness of the layer, the diameter of the inclusions
d was used in (A5): h = d. Although this is a rough estimate, it
should be a better estimate than to use the model for an infinitely
thick layer. According to [20], the reduction in the permittivity of
thin material layer is caused by the different response of atoms in the
surface layer to the electric field. In other words, the atoms near the
surface have a weaker polarization than atoms deep in the material in
the same excitation field. This transition layer should exists also for
spherical inclusions. Since here the model of planar transition layer is
used for spherical inclusions, the results concerning the effect of the
inclusion size should be considered only indicative.

For SrTiO3, the following modeling parameters were used: Tm =
2 K, ξS = 0.018, Tc = 42 K, ΘF = 175 K, ε00 = 2081, EN = 19.3 kV/cm
and α = 2·109 1/m [14]. The model for the permittivity of SrTiO3 does
not include losses. Therefore a constant loss tangent of tanδf = 2·10−4

was used [27].

A.2. Permittivities of Nontunable Dielectrics

The permittivity of the nontunable phase and loss tangent are assumed
to be constant to reduce the amount of different parameters and
to highlight the effect of the tunable phase. However, the model
is valid for more complicated permittivities, such as frequency and
temperature-dependent permittivity of the dielectric.

The permittivity of the rutile is calculated from the polycrystal
model [28]

εd(TiO2) =
1
3
εz +

2
3
εt −

2
9

(εz − εt)2

εz + 2εt
(A6)

where εz and εt are the anisotropic permittivity values from [27]. The
polycrystal model is a better assumption than a single-crystal model,
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because the SrTiO3/rutile composite is compressed using ceramic
powders. Anisotropic permittivity values εt = 170 and εz = 240 [27]
give εd(TiO2) = 141 for rutile. For the PTFE phase, the value of
εd(PTFE) = 2.1 [29] was used. At cryogenic temperatures the loss
tangent of PTFE is tanδd(PTFE) = 5 · 10−6 [29], and the loss tangent
of rutile is tanδd(TiO2) = 1.7 · 10−6 [27].
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