Vol. 76
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-07-20
A Novel Compact Planar Six-Way Power Divider Using Folded and Hybrid-Expanded Coupled Lines
By
, Vol. 76, 243-252, 2007
Abstract
A novel planar six-way power divider is proposed. Based on the conventional planar microstrip coupled line technology, the proposed compact six-way power divider is comprised of two stages coupled transmission lines, which is different to the conventional multistage power divider using the same expanded structure, one stage folded two-coupled line, and the other hybrid-expanded symmetrical three-coupled line. Therefore, the proposed power divider is size reduction, and has a broad-band property, which is better than 40% of fractional bandwidth. Furthermore, compared to a traditional six-way power divider, it is designed and fabricated easily. From the simulated and measured results, the six-way planar power divider shows a good specifications, which are insert loss 8.1±0.2 dB from 2 GHz to 3 GHz, and return loss less than −18 dB, isolation less than −19.5dB at 2.5 GHz, respectively.
Citation
Hui Chen, and Yu-Xing Zhang, "A Novel Compact Planar Six-Way Power Divider Using Folded and Hybrid-Expanded Coupled Lines," , Vol. 76, 243-252, 2007.
doi:10.2528/PIER07070601
References

1. Wilkinson, E. J., "An N-way hybrid power divider," IEEE Trans. Microw. Theory Tech., Vol. MTT-8, No. 1, 116-118, 1960.
doi:10.1109/TMTT.1960.1124668

2. Rosloniec, S., "Three-port hybrid power dividers terminated in complex frequency-dependent impedances," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 8, 1490-1493, 1996.
doi:10.1109/22.536034

3. Nakatsugawa, M. and K. Nishikawa, "A novel configuration for 1:N multiport power dividers using series/parallel transmissionline division and a polyimide/aluminaceramic structure for HPA module implementation," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 6, 1187-1193, 2001.
doi:10.1109/22.925519

4. Hettak, K., C. J. Verver, M. G. Stubbs, and G. A. Morin, "Broadbanding techniques for TEM N-way power dividers," IEEE MTT-S Int. Dig., Vol. 1, 8-13, 2003.

5. Turan, E. and S. Demir, "An all 50 ohm divider/combiner structure," IEEE MTT-S Int. Dig., Vol. 1, 2-7, 2002.

6. Chiu, J.-C., J.-M. Lin, and Y.-H. Wang, "A novel planar threeway power divider," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 8, 449-451, 2006.
doi:10.1109/LMWC.2006.879489

7. Kangasvieri, T., I. Hautajärvi, H. Jantunen, and J. Vähäkangas, "Miniaturized low-loss Wilkinson power divider for RF front-end module applications," Microwave and Optical Technology Letters, Vol. 48, No. 4, 660-663, 2006.
doi:10.1002/mop.21436

8. Bearse, S. V. (ed.), Compact Radial Power Combmer Teams up a Dozen Power GaAs FETsY Microwaves, Vol. 16, No. 10, Vol. 16, 1977.

9. Schellenberg, J. M. and M. Coiul, "A wideband radial power combiner for FET arnpfifiers," 1978 IEEE Znt. So/id-State Circuit Conf Dig., No. (fEEECat.CH1298-9SSC), 164-165, 1978.
doi:10.1109/ISSCC.1978.1155840

10. Coh, M., W. B. D. Geller, and J. M. Schellenber, "A lowatt broadband FET combmer/amplifier," IEEE MTT-S Znt. Microwace Symp. Dig., No. (fEEECat.79CH1439-9MTI), 292-297, 1979.

11. Cohn, S. B., "A class of broad-band three-port TEM mode hybrids," IEEE Trans. Microw. Theory Tech., Vol. MTT-16, No. 2, 110-116, 1968.
doi:10.1109/TMTT.1968.1126617

12. Gupta, K. C., R. Garg, and I. J. Bahl, Microstrip Lines and Slot Lines, Artech House, 1979.

13. Matsunaga, M., M. Katayama, and K. Yasumoto, "Coupled-mode analysis of line parameters of coupled microstrip lines," Progress In Electromagnetics Research, Vol. 24, 1-17, 1999.
doi:10.2528/PIER99032902

14. Khalaj-Amirhosseini, M., "Analysis of coupled or single nonuniform transmission lines using Taylor's series expansion," Progress In Electromagnetics Research, Vol. 60, 107-117, 2006.
doi:10.2528/PIER05101901

15. Khalaj-Amirhosseini, M., "Analysis of periodic and aperiodic coupled nonuniform transmission lines using the Fourier series expansion," Progress In Electromagnetics Research, Vol. 65, 15-26, 2006.
doi:10.2528/PIER06072701

16. Cheldavi, A. and A. Arshadi, "A simple model for the orthogonal coupled strip lines in multilayer PCB: (Quasi-TEM approach)," Progress In Electromagnetics Research, Vol. 59, 39-50, 2006.
doi:10.2528/PIER05083101

17. Lin, C. J., C.-C. Chiu, S.-G. Hsu, and H. C. Liu, "A novel model extraction algorithm for reconstruction of coupled transmission lines in high-speed digital system," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 12, 1595-1609, 2005.
doi:10.1163/156939305775537393

18. Wang, B.-Z., X.-H. Wang, and J.-S. Hong, "On the generalized transmission-line theory," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 3, 413-425, 2005.
doi:10.1163/1569393054139697

19. Khalaj Amirhosseini, M., "Determination of capacitance and conductance matrices of lossy shielded coupled microstrip transmission lines," Progress In Electromagnetics Research, Vol. 50, 267-278, 2005.
doi:10.2528/PIER04061601