Vol. 76
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-07-27
Using Photon Wave Function for the Time-Domain Analysis of Electromagnetic Wave Scattering
By
, Vol. 76, 397-412, 2007
Abstract
In this paper, a generalized photon wave function (PWF) which is applicable to electromagnetic problems is introduced. The formulation treats the electromagnetics fields as quantum mechanical entities. The introduced PWF is especially useful for boundaryvalue problems. For instance,the reflection coefficient at a dielectric half space is calculated based on the concepts of PWF and quantum mechanics. With the proposed method, inhomogeneous media, both isotropic and anisotropic, can also be analyzed. It is shown that by defining certain new variables, such as effective charges and effective currents, we will be able to describe the behavior of electromagnetic fields by the proposed photon wave function. At the end of this paper, a new FDTD method based on the notion of photon wave function is introduced and the resonance frequencies of a cubic cavity are obtained.
Citation
Bahar Khadem-Hosseinieh, Y. Komijani, Reza Faraji-Dana, and Mahmoud Shahabadi, "Using Photon Wave Function for the Time-Domain Analysis of Electromagnetic Wave Scattering," , Vol. 76, 397-412, 2007.
doi:10.2528/PIER07062101
References

1. Randell, L. M., The Grand Unified Theory of Classical Quantum Mechanics, June 2006 Edition.

2. Puccini, A., "About the zero mass photon," Progress In Electromagnetics Research, Vol. 55, 117-146, 2005.
doi:10.2528/PIER05030701

3. Bialynicki-Birula, I., "On the wave function of the photon," Acta Physica Polonica, Vol. 86, 97-116, 1994.

4. Bialynicki-Briula, I., "Photon wave function," Progress in Optics, Vol. XXXVI, 1996.

5. Taflove, A. and M. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," IEEE Trans. MTT, Vol. 23, No. 8, 1975.
doi:10.1109/TMTT.1975.1128640

6. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edition, 2005.

7. Hadi, M. F. and S. F. Mahmoud, "Optimizing the compact-FDTD algorithm for electrically large waveguiding structures," Progress In Electromagnetics Research, Vol. 75, 253-269, 2007.
doi:10.2528/PIER07060703

8. Georgakopoulos, S. V., C. R. Birtcher, C. A. Balanis, and R. A. Renaut, "Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration, part I: Theory," IEEE Anten. Propag. Mag., Vol. 44, No. 2, 134-142, 2002.
doi:10.1109/74.997945

9. Kantartzis, N. V. and T. D. Tsiboukis, Higher-Order FDTD Schemes for Waveguide and Antenna Structures, Morgan & Claypool Publishers, 2006.

10. Abd El-Raouf, H. E., E. A. El-Diwani, A. E.-H. Ammar, and F. El-Hefnawi, "A low-dispersion 3-D second-order in time fourthorder in space FDTD scheme (M3d24)," IEEE Trans. Antennas Propag., Vol. 52, No. 7, 1638-1646, 2004.
doi:10.1109/TAP.2004.831286

11. Teixeira, F. L. (ed.), Progress In Electromagnetics Research, Vol. 32, PIER 32, 2001.

12. Rosewarne, D. and S. Sarkar, "Rigorous theory of photon localizability," Quantum Opt., Vol. 4, 405-413, 1992.
doi:10.1088/0954-8998/4/6/005

13. De Raedt, H., et al. "Solving the Maxwell equations by the Chebychev method: A one-step finite-difference time-domain algorithm," IEEE Trans. Antennas Propagat., Vol. 51, No. 11, 2003.
doi:10.1109/TAP.2003.818809

14. Borisov, A. G. and S. V. Shabanov, "Wave packet propagation by the Faber polymomial approximation in electrodynamics of passive media," Journal of Computational Phys., Vol. 216, 391-402, 2006.
doi:10.1016/j.jcp.2005.12.011

15. Bass, F. and L. Resnick, "On the theory of the electromagnetic wave propagation thorough inhomogeneous dispersive media," J. of Electromagn. Waves and Appl., Vol. 19, No. 7, 925-931, 2005.
doi:10.1163/156939305775468714

16. Sakurai, J. J., Modern Quantum Mechanics, 964-03, ISBN 964-03-4473-7..

17. Jackson, J. D., Classical Electrodynamics, 3rd edition, 1998.

18. Harrington, R. F., Time Harmonic Electromagnetic Fields, McGraw-Hill, 1987.

19. Luo, S. and Z. Chen, "An efficient modal FDTD for absorbing boundary conditions and incident wave generator in waveguide structures," Progress In Electromagnetics Research, Vol. 68, 229-246, 2007.
doi:10.2528/PIER06090506

20. Pozar, D. M., Microwave Engineering, Addison Wesley, 1990.

21. Jancewicz, B., "Plane electromagnetic wave in PEMC," J. of Electromagn. Waves and Appl., Vol. 20, No. 5, 647-679, 2006.
doi:10.1163/156939306776137746

22. Yee, K. S., "Numerical solution of initial boundrary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 5, 302-307, 1966.

23. Ho, M., "Propagation of electromagnetic pulse onto a moving lossless dielectric half-space: one-dimensional simulation using characteristic-based method," J. of Electromagn. Waves and Appl., Vol. 19, No. 4, 469-478, 2005.
doi:10.1163/1569393053303910