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Abstract—In this paper, a generalized photon wave function (PWF)
which is applicable to electromagnetic problems is introduced. The
formulation treats the electromagnetics fields as quantum mechanical
entities. The introduced PWF is especially useful for boundary-
value problems. For instance,the reflection coefficient at a dielectric
half space is calculated based on the concepts of PWF and quantum
mechanics.

With the proposed method, inhomogeneous media, both isotropic
and anisotropic, can also be analyzed. It is shown that by defining
certain new variables, such as effective charges and effective currents,
we will be able to describe the behavior of electromagnetic fields by the
proposed photon wave function. At the end of this paper, a new FDTD
method based on the notion of photon wave function is introduced and
the resonance frequencies of a cubic cavity are obtained.

1. INTRODUCTION

Photons are mass-less, charge-less and spin-1 particles which are the
carriers of electromagnetic force and obey the relativistic quantum
field theory [1, 2]. On the other hand, in a semi-classical sense, the
electromagnetic problems are fully described by Maxwell’s equations.
The relation between these two representations (quantum mechanical
form and semi-classic one) is discussed in [3, 4] where it is stated
that photons obey an equation similar to the Schrdinger and Dirac
equations for electrons which is shown to be comparable to Maxwell’s
equations.
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PWF in electromagnetics was introduced for the first time in
[5], where Maxwell’s equations are manipulated in order to find the
stability condition for finite difference time domain (FDTD) method
[5–11]. Also in [12], some other relations based on PWF are derived
and discussed.

In [3, 4] the goal is to apply quantum mechanical formulation
to PWF. In other words, by rearrangement of Maxwell’s equations,
one can achieve a formulation similar to quantum equations, thus,
it will be possible to employ quantum mechanical formulations in
electromagnetics. In [3, 4] the prediction of the behavior of the photon
and the probability of its presence at a specific point in space is the
main goal, but not the application of PWF to electromagnetics.

In [13], for solving Maxwell’s equations by the Chebyshev method,
a one-step FDTD algorithm are proposed. The idea is based
on formulation of Maxwell’s equations as a single-operator matrix
equation. Due to symmetries in Maxwell’s equations, they use:

�X(t) =
√
µ �H(t) �Y (t) =

√
ε �E(t)

∂

∂t

(
�X(t)
�Y (t)

)
= Π

(
�X(t)
�Y (t)

)
− 1√

ε

(
0

�J(t)

)
(1)

Where �J(t) represents the source of the electric charge and Π denotes
the operator:

Π =




0 − 1√
µ
�∇× 1√

ε
1√
ε
�∇× 1√

µ
0


 (2)

The variables ( �E(t) and �H(t)) are expressed as an infinite series. By
imposing proper truncation, one can find the numerical solution of the
problem.

The limitation of such method is the inaccuracy of Chebychev
polynomial approximation in absorbing boundary conditions [13]. Also
in this method, only lossless materials can be used.

Reference [14] also utilizes a comparable technique such that [13]
is its special case. In [14] the initial value problem is solved by applying
the Faber polynomial approximation. As we have mentioned above, we
can abbreviate the electromagnetics equations as:

j
∂Φ(t)
∂t

= ΠΦ(t) (3)
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with previously defined operator Π. If Φ0 is the initial wave packet
configuration, then Φ(t) can be found from:

Φ(t) = exp(−jtΠ)Φ0 (4)

The aforementioned equation provides a numerical solution of the
initial-value problem. Time variant sources can’t be directly computed
by this method.

In [15] another use of operational form of Maxwells equations is
introduced. In this paper, it is shown that by applying small and
local perturbation theory we can treat electromagnetics as quantum
mechanics and obtain wave propagation in eigen-frequencies of a
system.

In this paper, a simple form of PWF is suggested which is shown
to be useful for treating certain boundary-value problems. A complex
vector wave function for photon is defined and it is shown that
electromagnetic formulation can be totally cast into this formulation.
Besides, we can use the boundary conditions, such as PEC, PMC,
or PML, for this formulation. Any kind of sources, either electric or
magnetic currents or charges, can be simulated by this method.

In Section 2 of this paper, we derive the basic formulation of
PWF for electromagnetics. In Section 3, we will review the Poynting
theorem, duality, and equivalence principle in the light of the proposed
PWF. Applying the PWF formulation to inhomogeneous media is
demonstrated in Sections 4 and 5.

Finally, in Section 6, we will present a numerical technique similar
to the finite difference time domain method. In this method, the
two unknowns, i.e., electric and magnetic fields can be computed
simultaneously at a reasonable computational cost.

2. DERIVING PHOTON WAVE FUNCTION IN
HOMOGENEOUS MEDIA

In a homogeneous time-invariant medium with permittivity and
permeability of ε(r) and µ(r), respectively, Maxwell’s equations are
given by 


−�∇× �E(�r, t) = µ(�r )

∂

∂t
�H(�r, t) + �Jm(�r, t)

�∇× �H(�r, t) = ε(�r )
∂

∂t
�E(�r, t) + �Je(�r, t)

(5)




�∇ ·
(
ε(�r ) �E(�r, t)

)
= ρe(�r, t)

�∇ ·
(
µ(�r ) �H(�r, t)

)
= ρm(�r, t)
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Defining photon wave function as

�ψ =
�E√
µ

+ j
�H√
ε
, (6)

one can write the two curl equations in (1) in the following compact
form:

�∇× �ψ(�r, t) = j
n

c

∂

∂t
�ψ(�r, t) + j �G(�r, t) (7)

in which c = 1/
√
µ0ε0 is the light velocity in free space and n(�r ) =√

µr(�r )εr(�r ) denotes refraction index of the medium.
Similarly, the two divergence equations in (5) can be combined in

a similar way to obtain

�∇ ·
(
n

c
�ψ

)
= g (8)

In (7) and (8), combined current and charge sources are defined as:

�G =
�Je√
ε

+ j
�Jm√
µ

g =
ρe√
ε

+ j
ρm√
µ

(9)

The continuity equation obviously holds and can be derived either from
(9) using the continuity equation for electric and magnetic sources or
from substitution of (8) in divergence of (7). Thus the result is:

�∇ · �G +
∂

∂t
g = 0 (10)

Equation (6) is the photon wave function we will use hereafter and
equations (7) and (8) describe the dynamics of photon wave function.
As shown in [3, 4] the source-free version of equation (7) can be
obtained from relativistic quantum mechanics. Equation (7) describes
evolution of photon wave function in time and space. It is similar
to the Schrödinger equation in non-relativistic or the Dirac equation
in relativistic quantum mechanics for electrons. In equations (9) and
(10) we put current either for sources or for the currents resulted from
conductivity (i.e., �G = σ �E).

Note that in this paper, we have assumed permittivity and
permeability to be real numbers.
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3. SOME BASIC THEOREMS

3.1. Poynting’s Theorem

To study the above interpretations further, let us calculate the
probability of detecting a photon at a position in space. Based
on quantum mechanics rules, the probability of finding photon in a
specified position can be obtained by:

P (�r, t) = �ψ · �ψ∗ =
| �E|2
µ

+
| �H|2
ε

= 2c2
(

1
2
ε| �E|2 +

1
2
µ| �H|2

)
(11)

Thus, we can deduce that:

P (�r, t) = 2c2u(�r, t) (12)

where u(�r, t) is the time varying local density of electromagnetics
energy. Consequently, P (�r, t) is proportional to the local density
of electromagnetic energy. Accordingly, we see that a probability
interpretation will be possible if we divide �ψ by the normalization
factor (2c2h̄ω). Corresponding to this probability density, a probability
current density is defined in quantum mechanics [16] which satisfies
continuity equation. If we take time derivative of spatial probability
function, upon substituting the time derivation from (7) we have:

∂

∂t
P (�r, t) =

(
∂

∂t
�ψ

)
· �ψ∗ + �ψ ·

(
∂

∂t
�ψ∗

)
= −jc�∇ ·

(
�ψ × �ψ∗

)
(13)

Since
�∇ ·

(
�ψ × �ψ∗

)
= −2jc�∇ · �S (14)

where �S stands for the Poynting vector, now the Poynting theorem will
read:

�∇ · �S +
∂

∂t
u(�r, t) = 0 (15)

Again, if we divide 2c�S by normalization factor 2c2h̄ω, the probability
current density is obtained and the last equation becomes the familiar
probability continuity theorem in quantum mechanics.

3.2. Duality Transformation

Assume that pair belongs to:

(a, b) ∈
{
( �E, η �H), (η �D, �B), (ηρe, ρm), (ηJe, Jm)

}
(16)
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Figure 1. Two distinct inhomogeneous media.

(η =
√

µ/ε is the medium characteristic impedance). There is a well
known theorem in electrodynamics [17], known as duality theorem,
which tells that Maxwell’s equations are invariant if each of the above
parameter pairs change under the following transformation:(

a′

b′

)
=

(
cos ξ sin ξ
− sin ξ cos ξ

) (
a
b

)
(17)

Duality theorem can be readily expressed in our formulation. Defining
complex function x that belongs to the set:

x ∈
{
�ψ, g, �G

}
(18)

It can be easily shown that since (7) and (8) are linear, they are
invariant under the transformation:

x′ = xe−jξ (19)

Hence, duality transformation is a trivial result of linearity of photon
wave equations. Measurable parameters, such as acceleration, are
independent of this transformation and are therefore in a quadratic
form. For this reason, one nontrivial application of this theorem will
be the prediction of magnetic charge in an electromagnetic field.

3.3. Equivalence Theorem

The equivalence theorem for time-harmonic field [18] can be similarly
formulated. Given the two cases which are shown in Fig. 1.

A third one (depicted in Fig. 2) can be introduced from the cases
shown in Fig. 1 and to support this solution, the surface current
�K = n̂× (�ψ2

out − �ψ1
in) must be placed on the interface.

4. INHOMOGENEOUS MEDIA

In this section we use the same form of Maxwell’s equations as we did in
Section 2, but ε(�r ) and µ(�r ) are not constant functions of space. If we
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Figure 2. Mixing two distinct conditions by placing field-based
surface currents on the interface.

again make use of (7) for photon wave function in the inhomogeneous
case, we have:

−�∇×
�E√
µ

=
√
µε

∂

∂t

�H√
ε
− �∇

(
1√
µ

)
× �E +

�Jm√
µ

�∇×
�H√
ε

=
√
µε

∂

∂t

�E√
µ

+ �∇
(

1√
ε

)
× �H +

�Je√
ε

(20)

After manipulation of the last two terms [Appendix A] and using the
fact that for any variable a, we have: �∇a2/a2 = 2�∇a/a, we arrive at:

�∇× �ψ = j
n

c

∂

∂t
�ψ + j �G +

1
2

(
�ψ ×

�∇n

n
+ �ψ∗ ×

�∇η

η

)
(21)

Likewise, the divergence equation can be shown to be

�∇ · �ψ =
c

n
g − 1

2

(
�ψ ·

�∇n

n
+ �ψ∗ ·

�∇η

η

)
(22)

However, in this form there is no apparent connection between (21)
and (22). The latter can be modified with a little algebra to yield:

�∇ ·
(
n

c
�ψ

)
= g +

n

2c

(
�ψ ·

�∇n

n
− �ψ∗ ·

�∇η

η

)
(23)

5. EFFECTIVE CHARGE AND CURRENT DENSITY

From comparing (21) with (7), it is evident that the last term can be
regarded as an effective current density:

�Geff =
1
2j

(
�ψ ×

�∇n

n
+ �ψ∗ ×

�∇η

η

)
(24)
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Similarly the last term in (22) can be modified to define the effective
charge density as:

�geff =
n

2c

(
�ψ ·

�∇n

n
− �ψ∗ ·

�∇η

η

)
(25)

We also define a new parameter:

�Ψ =
n

c
�ψ =

�D√
ε

+ j
�B√
µ

(26)

With these definitions, the set of Maxwell’s equations in inhomoge-
neous media becomes:

�∇× �ψ = j
∂

∂t
�Ψ + j

(
�G + �Geff

)
�∇ · �Ψ = g + geff

(27)

Effective charge and current densities do not satisfy the continuity
equation but it can readily be seen that total charge and total current
densities satisfy it:

�∇ ·
(
�G + �Geff

)
+

∂

∂t
(g + geff ) = 0 (28)

To understand the meaning and origin of effective charge and current
in (25) and (26) let us calculate them on an interface between two
different materials. From (25) and (26) we see that there is a surface
current and surface charge on the interface, given by:

�Keff = −j

(
�ψ(�r ′)

n2 − n1

n2 + n1
+ �ψ∗(�r ′)

η2 − η1

η2 + η1

)
δ(�r − �r ′) (29)

geff =
n1 + n2

4c
·
(
n̂ · �ψ(�r ′)

n2 − n1

n2 + n1
+ n̂ · �ψ∗(�r ′)

η2 − η1

η2 + η1

)
(30)

The second terms in each of the above boundary sources are easy to
be interpreted. Remembering that ψ∗(x,−t) is equivalent to reflected
wave from the interface, by considering its coefficient it is clear that
the coefficient of the term ψ∗(x,−t) is due to reflection of the incident
wave from the boundary. The first term in both of (29) and (30) are,
however, due to lensing (amplifying) effect of boundary transition on
incoming wave from the other medium.
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6. A NEW FDTD ALGORITHM BASED ON THE
NOTION OF PHOTON WAVE FUNCTION

Since its introduction, FDTD has been going through a number of
improvements. Even in recent years, novel algorithms for optimization
of FDTD are developed and applied to different structures [19]. Most
of these methods are based on the conventional form of FDTD. In this
paper, we introduce a new FDTD based on PWF. The main idea is to
prepare a finite difference time domain algorithm, based on the basic
formula for “Photon Wave Function.”

�∇× �ψ = j
n

c

∂

∂t
�ψ + j �G (31)

To achieve this aim, we separate the x, y, and z parts of the function
�ψ and make a central difference equation for each part in order to
calculate �ψ (and thus �E and �H) in a specific time. By this idea,
we will be able to calculate both electric and magnetic fields of each
direction with one-dimensional equations, in each time slot, in contrast
with the common FDTD method [5] that calculates the electric and
magnetic fields in asynchronous time slots.

6.1. Boundary Condition Simulation

To simulate various boundary conditions is an important case in
different FDTD methods [19]; here we will describe the way to impose
boundary conditions in this method.

The first and simplest form is PEC (perfect electric conductivity).
In this case, we should make tangantial electric field and normal
magnetic field zero in the neighbor of the boundary; as the numerical
coding for the x-part of the wave function in all three aspects of a cube
will be:

ψx(1, :, :) = real(ψx(1, :, :));
ψx(M, :, :) = real(ψx(M, :, :));
ψx(:, 1, :) = i× imag(ψx(:, 1, :));

ψx(:,M, :) = i× imag(ψx(:,M, :));
ψx(:, :, 1) = i× imag(ψx(:, :, 1));

ψx(:, :,M) = i× imag(ψx(:, :,M));

Where M is the number of cells in each direction.
As we know, for PML (perfectly matched layer), in common

notation we should separate electric and magnetic fields in two parts
with anisotropic conductivity (σi (i = x, y, z)). Based on known PML
formulation, we are familiar with 12 known formulas [5].
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By regarding the PML equations of common FDTD, using the
concept of PWF, and separating photon wave function as we do
for electric and magnetic fields, and also by assuming that all
conductivities are real numbers, can be abbreviated like:

∂

∂y

(
�ψzx + �ψzy

)
− ηcσy

�ψxy = j
c

n

∂

∂t

(
�ψxy

)
+ j �Gx

− ∂

∂z

(
�ψyx + �ψyz

)
− ηcσz

�ψxz = j
c

n

∂

∂t

(
�ψxz

)
+ j �Gx

∂

∂z

(
�ψxz + �ψxy

)
− ηcσz

�ψyz = j
c

n

∂

∂t

(
�ψyz

)
+ j �Gy

− ∂

∂x

(
�ψzx + �ψzy

)
− ηcσx

�ψyx = j
c

n

∂

∂t

(
�ψyx

)
+ j �Gy (32)

∂

∂x

(
�ψyx + �ψyz

)
− ηcσx

�ψzx = j
c

n

∂

∂t

(
�ψzx

)
+ j �Gz

− ∂

∂y

(
�ψxz + �ψxy

)
− ηcσy

�ψzy = j
c

n

∂

∂t

(
�ψzy

)
+ j �Gz

Thus, we have been able to reduce the number of needed equations,
from 12 to 6, which will increase the efficiency of our numerical method
compared to regular FDTD technique.

6.2. Numerical Example

In order to verify the numerical results of this method, we decided to
calculate the resonance frequencies of a cubic cavity. To attain this
goal, the electric and magnetic fields of a cavity by the mentioned
method were calculated. Afterwards, FFT transform of the results
were computed.

Here, we explain an example which is simulated with MATLAB
software. Assume a cavity with PEC (perfect electric condition) as
its boundary condition. We set imaginary part of �ψ normal to the
direction of cavity faces zero to make normal magnetic field zero on
PEC sides.

For space discretion, we have assumed that �ψ is a 3×3, with each
dimension contains desired cells (for this problem, we have assumed the
number of discretion in each dimension is 120). Thus mathematical
operations, such as the main equation (7), or imposing boundary
conditions are just simple matrix operations.

We have applied the below specifications for our numerical
program:

1) dt = 0.9 ×
(
1/

√
((1/dx2) + (1/dy2) + (1/dz2))/c

)
, which dx and

dy and dz are unit cell lengths (90% of Taflove margin)
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                     (A) 30 time slots are passed    

 
                     B) 90 time slots are passed 

     
 

Figure 3. Demonstrates the propagation of Ex-wave in x-y plane
stimulated by a current which is parallel to z-axis in the middle space
slot of the cavity.

2) The conductivity of inside medium = 0.0001 (a small attenuation
for stabilizing the stability of the system)

3) The number of iterations: 8000
4) Each side of the civility is 120 × dl, where dl is the length of the

cubic cell in each dimension. (dl = dx or dl = dy or dl = dz).

6.2.1. The Amount of Energy vs. Time (an Indication of Stability)

One indication of stability is the amount of energy in the system vs.
time. The energy in each time slot was computed. Figure 4 shows
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Figure 4. Stability indication, energy decreases versus time.

the result of computation of energy for the mentioned problem. Since
we have used a small dissipation (sigma = 0.0001 Ω−1m−1) to reduce
numerical noise of the system, the decreasing the energy by passing
time is seen. If we had instability in each part of �ψ, the energy would
be infinity. As a consequence, the decaying energy certifies the stability
of the proposed numerical technique, using applying Taflove stability
condition [5]. Especially the positive conductivity acts as a negative
feedback in the main formulation (7), in each step of the iteration and
thus confirms the stability.

6.2.2. FFT Calculation of the Numerical Result

It is known [20] that the resonance frequencies can be calculated by
the formula:

fc =
c

2
×

√√√√(
m

lx

)2

+

(
n

ly

)2

+
(

p

lz

)2

(33)

Where lx, ly, and lz are the dimensions and m,n, and p are the mode
indices and c denotes the velocity of light in space. For our example,
the first five frequencies are given in the Table 1.

As it seems from the table above, there are rather large simulation
errors in this problem. The main reason of this error is regarding
only 120 cells for each direction of the cavity; besides that, the loss
of the medium affected the FFT results, by reshaping the picks of
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Table 1. Resonance frequencies calculated by formulas and the
difference percentage with numerical method.

)(GHzfc (obtained by
numerical Method) 1.58 2.15 2.91 3.48

)(GHzfc (obtained by
exact formula)

1.68 2.37 2.90 3.36

Error Percentage 6% 9% 3% 4%

the diagram of the FFT calculation; it should be mentioned that for
numerical calculation, we have considered the worst case of the pick
points.

7. CONCLUSION

In this paper, development of “Photon Wave Function” was introduced,
for both homogeneous and inhomogeneous problems. This method
is efficient especially in analyzing wave propagation and calculation
of resonance frequencies in many-sided structures. By utilizing
quantum mechanics formulation and rules for the introduced photon
wave function, we are able to analyze electromagnetic problems more
efficiently.

A numerical method similar to the FDTD algorithm was
introduced based on the PWF by defining a complex variable, which
consists of both electric and magnetic fields as its real and imaginary
part, respectively; thus we can obtain both mentioned fields in each
unit cell that means fewer unit cells for the same precision as we
obtain in the conventional FDTD method. Another advantage of this
numerical method is that a general boundary condition can be imposed
on both fields. These features result in a more efficient numerical
method.

The method and formulation in this paper are not only useful for
numerical application, but also for demonstration of many similarities
between quantum mechanics and electromagnetics and thus the same
physical concept behind both realms.

APPENDIX A.

By combining the below equation:

−�∇×
�E√
µ

=
√
µε

∂

∂t

�H√
ε
− �∇

(
1√
µ

)
× �E +

�Jm√
µ

(A1)
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With
�∇×

�H√
ε

=
√
µε

∂

∂t

�E√
µ

+ �∇
(

1√
ε

)
× �H +

�Je√
ε

(A2)

We can produce:

�∇×
(

�E√
µ

+ j
�H√
ε

)
= j

n

c

∂

∂t

(
�E√
µ

+ j
�H√
ε

)

+j

(
�Je√
ε

+ j
�Jm√
µ

)
+ j �∇

(
1√
µ

)
× �E + j �∇

(
1√
ε

)
× �H (A3)

With a little manipulation of the last two terms we have

�∇
(

1√
µ

)
× �E+j �∇

(
1√
ε

)
× �H =

−1
2

[
�∇µ

µ
×

�E√
µ

+
�∇ε

ε
× j

�H√
ε

]

=
1
4

[
�ψ×

(
�∇µ

µ
+

�∇ε

ε

)
+ �ψ∗×

(
�∇µ

µ
−

�∇ε

ε

)]

=
1
2

[
�ψ ×

(
�∇n

n

)
+ �ψ∗×

(
�∇η

η

)]
(A4)

This completes the proof for equation (21).
Also, if we compute the divergence of both sides in equation (7),

we will obtain:
∂

∂t

[
n

c
�∇ · �ψ + �∇

(
n

c

)
· �ψ − g

]
= 0 (A5)

By assuming the time variant system, or regarding the bias charge as
zero ( as a result of what is mentioned in duality transformation),

n

c
�∇ · �ψ + �∇

(
n

c

)
· �ψ − g = 0 (A6)

Thus,

�∇ · �ψ =
c

n
g − c

n
�∇

(
n

c

)
· �ψ =

c

n
g − c

2n

(
√
ε
�∇µ√
µ

+
√
µ
�∇ε√
ε

)
· �ψ

=
c

n
g − 1

2

(
�∇µ

µ
+

�∇ε

ε

)
· �ψ (A7)

With manipulation, as (A4), we can obtain (equation (22)):

�∇ · �ψ =
c

n
g − 1

2

(
�∇n

n
· �ψ +

�∇η

η
· �ψ∗

)
(A8)
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APPENDIX B.

�∇ ·
(
n

c
�ψ

)
= �∇

(
n

c

)
· �ψ +

n

c
�∇ · �ψ

= �∇
(
n

c

)
· �ψ + g − n

2c

(
�ψ ·

�∇n

n
+ �ψ∗ ·

�∇η

η

)

= g +
n

c

�∇n

n
· �ψ −

(
�ψ ·

�∇n

n

)
n

2c
− n

2c
�ψ∗ ·

�∇η

η

= g +
n

2c

(
�ψ ·

�∇n

n
− �ψ∗ ·

�∇η

η

)
(B1)

This results in equation (23).
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