Vol. 75
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-06-18
Dielectric Constant Measurement for Thin Material at Microwave Frequencies
By
, Vol. 75, 239-252, 2007
Abstract
Apractical problem in the reflection method for dielectric constant measurement is the difficulty to ensure the sample is placed exactly at the waveguide flange. Asmall position offset of the dielectric sample will give rise to some errors in calculating the dielectric constant, especially when a thin sample is used. To circumvent this problem, a method to determine the dielectric constant by measuring the transmission coefficient of the thin slab placed in a waveguide has been developed. Slab position offset from the measurement reference plane has no effect on the measurement accuracy. An explicit expression for the dielectric constant is obtained in terms of the transmission coefficient by simplifying the exact solution for transmission through a thin dielectric slab. The method is verified with measurement on Teflon of 0.5-mm thickness. The measured dielectric constant of Teflon shows excellent agreement of both ε' and ε'' with published data. Subsequently, the dielectric constant of a vegetation leaf was measured.
Citation
Boon-Kuan Chung, "Dielectric Constant Measurement for Thin Material at Microwave Frequencies," , Vol. 75, 239-252, 2007.
doi:10.2528/PIER07052801
References

1. Nyfors, E. and P. Vainikainen, Industrial Microwave Sensors, Chapter 2, 1989.

2. Bengtsson, N. E. and P. O. Risman, "Dielectric properties of food at 3 GHz as determined by a cavity perturbation technique II: Measurements on food materials," Journal of Microwave Power, Vol. 6, No. 2, 107-123, 1971.

3. De Loor, G. P. and F. W. Meijboom, "The dielectric constant of foods and other materials with high water contents at microwave frequencies," Journal of Food Technology, Vol. 1, 313-322, 1966.

4. Courtney, W. E., "Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators," IEEE Trans. Microwave Theory Tech., Vol. MTT-18, No. 8, 476-485, 1970.
doi:10.1109/TMTT.1970.1127271

5. Qian, C. and W. B. Dou, "Anew approach for measuring permittivity of dielectric materials," Journal Electromagnetic Waves and Applications, Vol. 19, No. 6, 795-810, 2005.
doi:10.1163/1569393054069055

6. Bindu, G., A. Lonappan, V. Thomas, et al. "Dielectric studies of corn syrup for applications in microwave breast imaging," Progress In Electromagnetics Research, Vol. 59, 175-186, 2006.
doi:10.2528/PIER05072801

7. Nicholson, A. M. and G. Ross, "Measurement of intrinsic properties of materials by time domain techniques," IEEE Trans. Instrum. Meas., Vol. IM-19, No. 11, 377-382, 1970.

8. Weir, W. B., "Automatic measurements of complex dielectric constant and permeability at microwave frequencies," IEEE Proceedings, Vol. 62, No. 1, 33-36, 1974.

9. Backer, J. and R. Geyer, "Anonlinear least-squares solution with causality constraints applied to transmission line permittivity and permeability determination," IEEE Trans. Instrum. Meas., Vol. 41, No. 10, 646-652, 1992.
doi:10.1109/19.177336

10. Somlo, P. I., "Acon venient self-checking method for automated microwave measurement of μ and ε," IEEE Trans. Instrum. Meas., Vol. 42, No. 4, 213-216, 1993.
doi:10.1109/19.278551

11. Szendrenyi, B. B., K. Kazi, and I. Mojzes, "An alternative broadband method for automatic measurement of the complex permeability and permittivity of materials at microwave frequencies," 1988 MTT-S Digest, 743-746, 1988.
doi:10.1109/MWSYM.1988.22138

12. Chung, B. K., "Acon venient method for complex permittivity measurement of thin materials at microwave frequencies," Journal of Physics D: Applied Physics, Vol. 39, 1926-1931, 2006.
doi:10.1088/0022-3727/39/9/030

13. Huang, R. F. and D. M. Zhang, "Application of mode matching method to analysis of axisymmetric coaxial discontinuity structures used in permeability and/or permittivity measurement," Progress In Electromagnetics Research, Vol. 67, 205-2302007, 2302.
doi:10.2528/PIER06083103

14. Stuchly, M. A. and S. S. Stuchly, "Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies — Areview," IEEE Trans. Instrum. Meas., Vol. IM-29, No. 9, 176-183, 1980.

15. Mosig, J. R., J. C. E. Besson, M. Gex-Fabry, and F. E. Gardiol, "Reflection of an open-ended coaxial line and application to nondestructive measurement of materials," IEEE Trans. Instrum. Meas., Vol. IM-30, No. 3, 46-51, 1981.

16. Misra, D., M. Chabbra, B. R. Epstein, M. Mirotznik, and K. R. Foster, "Noninvasive electrical characterization of materials at microwave frequencies using an open-ended coaxial line: Test of an improved calibration technique," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 1, 8-14, 1990.
doi:10.1109/22.44150

17. Nyshadham, A., C. L. Sibbald, and S. S. Stuchly, "Permittivity measurements using open-ended sensors and reference liquid calibration — An uncertainty analysis," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 2, 305-314, 1992.
doi:10.1109/22.120103

18. Chen, G., K. Li, and Z. Ji, "Bilayered dielectric measurement with an open-ended coaxial probe," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 6, 966-971, 1994.
doi:10.1109/22.293564

19. Trabelsi, S., A.W. Kraszewski, and S. O. Nelson, "Nondestructive microwave characterisation for bulk density and moisture content determination in shelled corn," Meas. Sci. & Technol., Vol. 9, 570-578, 1998.
doi:10.1088/0957-0233/9/4/003

20. Sarabandi, K. and F. T. Ulaby, "Technique for measuring the dielectric constant of thin materials," IEEE Trans. on Instrum. Meas., Vol. 37, No. 4, 631-636, 1988.
doi:10.1109/19.9828

21. Agilent Technologies, Network Analysis Applying the 8510 TRL Calibration for Non-Coaxial Measurements, Network Analysis Applying the 8510 TRL Calibration for Non-Coaxial Measurements, 8510, Product Note 8510- 8A, 2001.

22. Ulaby, F. T. and M. A. El-Rayes, "Microwave dielectric spectrum of vegetation-Part II: Dual-dispersion model," IEEE Trans. Geosci. Remote Sensing, Vol. GE-25, 550-557, 1987.
doi:10.1109/TGRS.1987.289833