Vol. 74
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-05-31
An Efficient Analysis of Vertical Dipole Antennas Above a Lossy Half-Space
By
Progress In Electromagnetics Research, Vol. 74, 353-377, 2007
Abstract
The electromagnetic modeling of radiation by vertical dipole antennas above a lossy half-space is an important subject. The modeling often encounters Sommerfeld-type integrals that are normally highly oscillatory with poor convergence. Recently, an efficient computation of the electric field radiated by an infinitesimal electric dipole above a lossy half-space has been reported, in which the Sommerfeld-type integrals are reduced to rapidly-converging integrals. Using such efficiently-calculated electric field as the Green's function, in this paper, an electric field integral equation (EFIE) is formulated for the analysis of a vertical dipole antenna above a lossy half-space. Then, the EFIE is solved numerically employing the Method of Moments (MoM). Sample numerical results are presented and discussed for the current distribution as well as the input impedance and radiation pattern of the antenna. In particular, the EFIE solutions of the current distribution on an antenna in free space are checked with that obtained using a traditional approach of solving the Pocklington's equation. Also, the current distributions on an antenna above a very lossy halfspace are checked by comparing them with that for the antenna above a PEC plane. Data of the current distribution and the input impedance show that for an antenna close to the media interface separating the two half-spaces, the electromagnetic parameters of the lower half-space can significantly affect the antenna characteristics. The radiation patterns of the antenna presented all exhibit properties as expected and similar to that documented in literature for infinitesimal vertical dipoles above a lossy half-space.
Citation
Xiao-Bang Xu, and Yongfeng Huang, "An Efficient Analysis of Vertical Dipole Antennas Above a Lossy Half-Space," Progress In Electromagnetics Research, Vol. 74, 353-377, 2007.
doi:10.2528/PIER07052202
References

1. Elliott, R. S., Antenna Theory and Design, Prentice-Hall Inc., 1981.

2. Pocklington, H. C., "Electrical oscillations in wire," Cambridge Phil. Soc. Proc., Vol. 9, 324-332, 1897.

3. Hallen, E., "Theoretical investigations into transmitting and receiving qualities of antennas," Nova Acta Regiae Soc. Sci. Upsaliensis, No. 1, 1-44, 1938.

4. Saadatmandi, A., M. Bazzaghi, and M. Dehghan, "Sinccollocation methods for the solution of Hallen's integral equation," Journal ofEle ctromagnetic Waves and Applications, Vol. 19, No. 2, 245-256, 2005.
doi:10.1163/1569393054497258

5. Butler, C. M., "Integral equation method," ECE 839 Lecture Notes, 29634-0915, 2963.

6. Wait, J. R., Electromagnetic Waves in Stratified Media, Pergamon, 1970.

7. Shubair, R. M. and Y. L. Chow, "A closed-form solution of vertical dipole antennas above a dielectric half-space," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 12, 1737-1741, 1993.
doi:10.1109/8.273319

8. Sommerfeld, A., Partial Differential Equations, Academic Press, 1949.

9. Felson, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice Hall Inc., 1973.

10. Arand, B. A., et al. "Analysis of aperture antennas above lossy half-space," Progress In Electromagnetics Research, Vol. 44, 39-55, 2004.
doi:10.2528/PIER03022203

11. Sarabandi, K., M. D. Casciato, and I.-S. Koh, "Efficient Calculation of the fields of a dipole radiating above an impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1222-1235, 2002.

12. Lindell, I. V. and E. Alanen, "Exact image theory for Sommerfeld half-space problems, Part I: Vertical magnetic dipole," IEEE Transactions on Antennas and Propagation, Vol. AP-32, No. 2, 126-133, 1984.
doi:10.1109/TAP.1984.1143278

13. Lindell, I. V. and E. Alanen, "Exact image theory for Sommerfeld half-space problems, Part II: Vertical electric dipole," IEEE Transactions on Antennas and Propagation, Vol. AP-32, No. 10, 1027-1032, 1984.
doi:10.1109/TAP.1984.1143204

14. Lindell, I. V. and E. Alanen, "Exact image theory for Sommerfeld half-space problems, Part III: Vertical electric dipole," IEEE Transactions on Antennas and Propagation, Vol. AP-32, No. 8, 841-847, 1984.
doi:10.1109/TAP.1984.1143431

15. Harrington, R. F., Field Computation by Moment Methods, Robert E. Krieger Publishing Company, 1982.

16. Harrington, R. F., Time-Harmonic Electromagnetic Fields, IEEE Press, 2001.

17. King, R. W. P., The Theory ofLine Antennas, Harvard University, 1956.

18. Papakanellos, P. J. and G. Fikioris, "A possible remedy for the oscillations occurring in thin-wire mom analysis of cylindrical antennas," Progress In Electromagnetics Research, Vol. 69, 77-92, 2007.
doi:10.2528/PIER06120502

19. Sijher, T. S. and A. A. Kishk, "Antenna modeling by infinitesimal dipoles using genetic algorithms," Progress In Electromagnetics Research, Vol. 52, 225-254, 2005.
doi:10.2528/PIER04081801

20. Zhang, X. J. et al., "Near field and surface field analysis of thin wire antenna in the presence of conducting tube," Progress In Electromagnetics Research, Vol. 45, 313-333, 2004.
doi:10.2528/PIER03081102

21. Stutzman, W. L., Antenna Theory and Design, John Wiley and Sons, 1981.

22. Balanis, C. A., Antenna Theory Analysis and Design, John Willy & Sons, 1997.