Vol. 75
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-06-07
Spectral Analysis of Fibonacci-Class One-Dimensional ‎Quasi-Periodic Structures
By
Progress In Electromagnetics Research, Vol. 75, 69-84, 2007
Abstract
Abstract-In this paper, spectral properties of the Fibonacci-class one-dimensional quasi-periodic structures, FCJ(n), as an important optical structure are investigated. Analytical relations for description of the spectral properties of FCJ(n) are used. Fast Fourier Transform (FFT) for investigation of the spectral properties of these structures is proposed. FFT spectrum of the Fibonacci-class one-dimensional quasi-periodic structures contains peaks that are equivalent to photonic bandgaps or multiband reflection filter. Based on the proposed relations and FFT simulation results, the optical bandgap and other properties of these structures are studied. In this paper, the effects of the optical and geometrical parameters on optical properties of the Fibonacci quasi-periodic structures are considered. Our proposed relations show that the spectral contents of the Fibonacci-class onedimensional quasi-periodic structures have two main terms including the low and high frequency parts. Our results illustrate that the high frequency term depends up on the class order, n, and the width of the layer B, db, while the low frequency term depends on the width of the layer A, da. According to the proposed method, the spectral contents of FCJ(n) includes multi narrowband peaks multiplied by a quasi periodic envelope function. The number of multi narrow bands within a periods of the envelope function can be controlled by varying db and n and also the number of period of envelope function can be manipulated by da. Results obtained from our proposed analytical relations and FFT based simulation results are close together.
Citation
Saeed Golmohammadi, Mohammad Moravvej-Farshi, Ali Rostami, and Abbas Zarifkar, "Spectral Analysis of Fibonacci-Class One-Dimensional ‎Quasi-Periodic Structures," Progress In Electromagnetics Research, Vol. 75, 69-84, 2007.
doi:10.2528/PIER07051902
References

1. Shechtman, D., I. Blech, D. Gratias, and J. W. Cahn, "Metallic phase with long-range orientational order and no translational symmetry," Physical Review Letters, Vol. 53, 1984.
doi:10.1103/PhysRevLett.53.1951

2. Kohmoto, M., B. Sutherland, and K. Iguchi, "Localization in optics: quasi-periodic media," Physical Review Letters, Vol. 58, 1987.
doi:10.1103/PhysRevLett.58.2436

3. Gellermann, W., M. Kohmoto, B. Sutherland, and P. C. Taylor, "Localization of light waves in fibonacci dielectric multilayers," Physical Review Letters, Vol. 72, 1994.
doi:10.1103/PhysRevLett.72.633

4. Sibilia, C., P. Masciulli, and M. Bertolotti, "Optical properties of quasiperiodic (self-similar) structures," Pure Appl. Opt., Vol. 7, 383-391, 1998.
doi:10.1088/0963-9659/7/2/028

5. Abal, G., R. Donangelo, A. Romanelli, A. C. S. Schifino, and R. Siri, "Dynamical localization in quasiperiodic driven systems," Journal of Physical Review E, Vol. 65, 046236-2, 2002.
doi:10.1103/PhysRevE.65.046236

6. Macia, E., "Optical engineering with Fibonacci dielectric multilayers," Applied Physics Letters, Vol. 73, 1998.
doi:10.1063/1.122759

7. Lusk, D., I. Abdulhalim, and F. Placido, "Omnidirectional reection from Fibonacci quasi-periodic one-dimensional photonic crystal," Optics Communications, Vol. 198, 2001.
doi:10.1016/S0030-4018(01)01531-0

8. Peng, R. W., M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, "Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers," Applied Physics Letters, Vol. 80, 2002.

9. Qin, Y. Q., Y. Y. Zhu, S. N. Zhu, and N. B. Ming, "Quasiphase- matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice," Journal of Applied Physics, Vol. 84, 1998.
doi:10.1063/1.368988

10. Zhu, S. N., Y. Y. Zhu, and N. B. Ming, "Quasi-phasematched third-harmonic generation in a quasi-periodic optical superlattice," Science, Vol. 278, 1997.
doi:10.1126/science.278.5339.843

11. Macia, E., "Exploiting quasiperiodic order in the design of optical devices," Physical Review B, Vol. 63, 205421, 2001.
doi:10.1103/PhysRevB.63.205421

12. Macia, E., "Optical applications of fibonacci dielectric multilayers," Ferroelectrics, Vol. 250, 2001.
doi:10.1080/00150190108225111

13. Yang, X., Y. Liu, and X. Fu, "Transmission properties of light through the Fibonacci-class multilayers," Journal of Physical Review B, Vol. 59, 1999.

14. Huang, X. Q., S. S. Jiang, R. W. Peng, and A. Hu, "Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers," Journal of Physical Review E, Vol. 59, 245104-2, 2001.
doi:10.1103/PhysRevB.63.245104

15. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic one-dimensional generalized multilayer fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.
doi:10.2528/PIER05091701

16. Watanabe, K. and K. Kuto, "Numerical analysis of optical waveguides based on periodic Fourier transform," Progress In Electromagnetics Research, Vol. 64, 1-21, 2006.
doi:10.2528/PIER06060802

17. Khalaj-Amirhosseini, M., "Analysis of periodic and aperiodic coupled nonuniform transmission lines using the Fourier series expansion," Progress In Electromagnetics Research, Vol. 65, 15-26, 2006.
doi:10.2528/PIER06072701