Vol. 74
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-05-03
Characterization of Perfectly Conducting Targets in Resonance Domain with Their Quality of Resonance
By
Progress In Electromagnetics Research, Vol. 74, 69-84, 2007
Abstract
In resonance domain, the radar scattering response of any object can be modelled by natural poles of resonance with the formalism of the Singularity Expansion Method. The mapping of these poles in the complex plane gives useful information for the discrimination of a radar target, as its general shape, its characteristic dimension and its constitution. In this paper, we use an analogy with resonant circuits modelling to define the quality factor Q of each resonance. Therefore, we propose to characterize the resonance behavior of perfectly conducting targets with this quality factor Q and the natural pulsation of resonance ω0. Indeed, this new representation in {ω0;Q} allows to better separate information than the usual mapping of natural poles of resonance in the complex plane. For perfectly conducting canonical and complex shape targets, we present results exhibiting advantages of these two parameters {ω0;Q}.
Citation
Janic Chauveau, Nicole de Beaucoudrey, and Joseph Saillard, "Characterization of Perfectly Conducting Targets in Resonance Domain with Their Quality of Resonance," Progress In Electromagnetics Research, Vol. 74, 69-84, 2007.
doi:10.2528/PIER07041602
References

1. Baum, C. E., "The singularity expansion method," Transient Electromagnetic Field, 129-179, 1976.

2. Baum, C. E.E. J. Rothwell, K. M. Chen, and D. P. Nyquist, "The singularity expansion method and its application to target identification," Proceedings of the IEEE, Vol. 79, No. 10, 1481-1492, 1991.

3. Rothwell, E. J., K. M. Chen, and D. P. Nyquist, "Extraction of the natural frequencies of a radar target from a measured response using E-pulse techniques," IEEE Trans. Ant. Prop., Vol. 35, No. 6, 715-720, 1987.
doi:10.1109/TAP.1987.1144166

4. Chen, K. M., D. P. Nyquist, E. J. Rothwell, L. L Webb, and B. Drachman, "Radar target discrimination by convolution of radar return with extinction-pulses and single-mode extraction signals," IEEE Trans. Ant. Prop., Vol. 34, No. 7, 896-904, 1986.
doi:10.1109/TAP.1986.1143908

5. Toribio, R., P. Pouliguen, and J. Saillard, "Identification of radar targets in resonance zone: E-pulse techniques," Progress In Electromagnetics Research, Vol. 43, 39-58.
doi:10.2528/PIER02100201

6. Lee, J. H. and H. T. Kim, "Radar target discrimination using transient response reconstruction," Journal of Electromagnetic Waves and Applications, No. 5, 655-669, 2005.
doi:10.1163/1569393053305062

7. Chen, C-C., "Electromagnetic resonances of immersed dielectric spheres," IEEE Trans. Ant. Prop., Vol. 46, No. 7, 1074-1083, 1998.
doi:10.1109/8.704811

8. Kennaugh, E. M. and D. L. Moffatt, "Transient and impulse response approximations," Proceedings of the IEEE, Vol. 53, No. 8, 893-901, 1965.

9. Cauchy, A. L., "Sur la formule de Lagrange relative `a l'interpolation," Analyse Algebrique, 1821.

10. Adve, R. S., T. K. Sarkar, S. M. Rao, E. K Miller, and D. R. Pflug, "Application of the Cauchy method for extrapolating/ interpolating narrow-band system responses," IEEE Trans. Mic. Theory and Tech., Vol. 45, No. 5, 837-845, 1997.
doi:10.1109/22.575608

11. Tesche, F. M., "On the analysis of scattering and antenna problems using the singularity expansion technique," IEEE Trans. Ant. Prop., Vol. 21, No. 1, 53-62, 1973.
doi:10.1109/TAP.1973.1140398

12. Moffatt, D. L. and K. A. Shubert, "Natural resonances via rational approximants," IEEE Trans. Ant. Prop., Vol. 25, No. 5, 657-660, 1977.
doi:10.1109/TAP.1977.1141661

13. Kumaresan, R., "On a frequency domain analog of Prony's method," IEEE Trans. on Acoustics, Vol. 38, 168-170, 1990.

14. Prony, R., "Essai experimental et analytique sur les lois de la dilatabilite de fluides elastiques et sur celles de la force expansive de la vapeur de l'alcool `a differentes temperatures," J. de l'Ecole Polytechnique, Vol. 1, 24-76, 1795.

15. Sarkar, T. K. and O. Pereira, "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials," IEEE Ant. and Prop. Mag., Vol. 37, No. 1, 48-55, 1995.
doi:10.1109/74.370583

16. Wang, S. G., X. P. Guan, X. Y. Ma, D. W. Wang, and Y. Su, "Calculating the poles of complex radar targets," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2065-2076, 2006.
doi:10.1163/156939306779322657

17. Lee, J. H. and H. T. Kim, "Hybrid method for natural frequency extraction: Performance improvement using Newton-Raphson method," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 8, 1043-1055, 2005.
doi:10.1163/156939305775526061

18. Rothwell, E., "Natural-mode representation for the field reflected by an inhomogeneous conductor-backed material layer-TE case," Progress In Electromagnetics Research, Vol. 63, 1-20, 2006.
doi:10.2528/PIER06051801

19. FEKO-EM Software and Systems, www.feko.info, Technopark- Stellenbosch, South Africa..

20. Berni, A. J., "Target identification by natural resonance estimation," IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-11, No. 2, 147-154, 1975.
doi:10.1109/TAES.1975.308051

21. Li, L. and C. H. Liang, "Analysis of resonance and quality factor of antenna and scattering systems using complex frequency method combined with model-based parameter estimation," Progress In Electromagnetics Research, Vol. 46, 165-188, 2004.
doi:10.2528/PIER03091501

22. Gustafsson, M. and S. Nordebo, "Bandwidth, Q factor, and resonance models of antennas," Progress In Electromagnetics Research, Vol. 62, 1-20, 2006.
doi:10.2528/PIER06033003

23. Long, Y., "Determination of the natural frequencies for conducting rectangular boxes," IEEE Trans. Ant. Prop., Vol. 42, No. 7, 1016-1021, 1994.
doi:10.1109/8.299607

24. Chauveau, J., N. de Beaucoudrey, and J. Saillard, "Characterization of radar targets in resonance domain with a reduced number of natural poles," EuMW/Eurad, No. 10, 69-72, 2005.

25. Chauveau, J., N. de Beaucoudrey, and J. Saillard, "Analysis of complex shape targets by natural poles of resonance. Determination of characteristic dimensions," URSI B-279.9, No. 7, 2006.

26. Toribio, R., "Methodes d'extraction de pˆoles de resonance: Application `a la caracterisation de cibles," Ph.D. thesis, 2002.