Vol. 73
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-04-16
An Effective Technique for Reducing the Truncation Error in the Near-Field-Far-Field Transformation with Plane-Polar Scanning
By
Progress In Electromagnetics Research, Vol. 73, 213-238, 2007
Abstract
An effective approach is proposed in this paper for estimating the near-field data external to the measurement region in the plane-polar scanning. It relies on the nonredundant sampling representations of the electromagnetic field and makes use of the singular value decomposition method for the extrapolation of the outside samples. It is so possible to reduce in a significant way the error due to the truncation of the measurement zone thus increasing the farfield angular region of good reconstruction. The comparison of such an approach, based on the optimal sampling interpolation expansions, with an existing procedure using the cardinal series has highlighted that the proposed technique works better. Some numerical tests are reported for demonstrating its effectiveness.
Citation
Francesco D'Agostino, Flaminio Ferrara, Claudio Gennarelli, Rocco Guerriero, and Giovanni Riccio, "An Effective Technique for Reducing the Truncation Error in the Near-Field-Far-Field Transformation with Plane-Polar Scanning," Progress In Electromagnetics Research, Vol. 73, 213-238, 2007.
doi:10.2528/PIER07032202
References

1. Bucci, O. M., C. Gennarelli, and C. Savarese, "Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples," IEEE Trans. Antennas Propagat., Vol. 46, 351-359, 1998.
doi:10.1109/8.662654

2. Bucci, O. M. and G. Franceschetti, "On the spatial bandwidth of scattered fields," IEEE Trans. Antennas Propagat., Vol. AP-35, 1445-1455, 1987.
doi:10.1109/TAP.1987.1144024

3. Bucci, O. M.C. Gennarelli, G. Riccio, and C. Savarese, "Nearfield- far-field transformation from nonredundant plane-polar data: effective modellings of the source," IEE Proc.-Microw., Vol. 145, 33-38, 1998.

4. Bucci, O. M., F. D'Agostino, C. Gennarelli, G. Riccio, and C. Savarese, "NF-FF transformation with plane-polar scanning: ellipsoidal modelling of the antenna," Automatika, Vol. 41, 159-164, 2000.

5. D'Agostino, F., C. Gennarelli, G. Riccio, and C. Savarese, "Data reduction in the NF-FF transformation with bi-polar scanning," Microw. Opt. Technol. Lett., Vol. 36, 32-36, 2003.
doi:10.1002/mop.10662

6. Ferrara, F., C. Gennarelli, R. Guerriero, G. Riccio, and C. Savarese, "An efficient near-field to far-field transformation using the planar wide-mesh scanning," J. Electromagn. Waves Appl., Vol. 21, 341-357, 2007.
doi:10.1163/156939307779367404

7. D'Agostino, F., F. Ferrara, C. Gennarelli, G. Riccio, and C. Savarese, "NF-FF transformation with cylindrical scanning from a minimum number of data," Microw. Opt. Technol. Lett., Vol. 35, 264-270, 2002.
doi:10.1002/mop.10578

8. Bucci, O. M., F. D'Agostino, C. Gennarelli, G. Riccio, and C. Savarese, "Data reduction in the NF-FF transformation technique with spherical scanning," J. Electromagn. Waves Appl., Vol. 15, 755-775, 2001.

9. D'Agostino, F., C. Gennarelli, G. Riccio, and C. Savarese, "Theoretical foundations of near-field-far-field transformations with spiral scannings," Progress In Electromagnetics Research, Vol. 61, 193-214, 2006.
doi:10.2528/PIER06021401

10. Gennarelli, C., G. Riccio, F. D'Agostino, and F. Ferrara, Near-field-Far-field Transformation Techniques, Vol. 1, Vol. 1, 2004.

11. Bucci, O. M., C. Gennarelli, and C. Savarese, "Optimal interpolation of radiated fields over a sphere," IEEE Trans. Antennas Propagat., Vol. AP-39, 1633-1643, 1991.
doi:10.1109/8.102779

12. Slepian, D. and H. O. Pollak, "Prolate spheroidal wave functions, Fourier analysis and uncertainty — I," Bell Syst. Tech. J., Vol. 40, 43-63, 1961.

13. Papoulis, A., "A new algorithm in spectral analysis and bandlimited extrapolation," IEEE Trans. Circuits, Vol. CAS-22, 735-742, 1975.
doi:10.1109/TCS.1975.1084118

14. Sabri, M. S. and W. Steenaart, "An approach to band-limited signal extrapolation: the extrapolation matrix," IEEE Trans. Circuits, Vol. CAS-25, 74-78, 1978.
doi:10.1109/TCS.1978.1084442

15. Cadzow, J. A., "An extrapolation procedure for band-limited signals," IEEE Trans. Acoust., Vol. ASSP-27, 4-12, 1979.
doi:10.1109/TASSP.1979.1163187

16. Jain, A. K. and S. Ranganath, "Extrapolation algoritms for discrete signals with application in spectral estimation," IEEE Trans. Acoust., Vol. ASSP-29, 830-845, 1981.
doi:10.1109/TASSP.1981.1163639

17. Sanz, J. L. C. and T. S. Huang, "Some aspects of band-limited signal extrapolation: models, discrete approximation, and noise," IEEE Trans. Acoust., Vol. ASSP-31, 830-845, 1983.

18. Sullivan, B. J. and B. Liu, "On the use of singular value decomposition and decimation in discrete-time band-limited signal extrapolation," IEEE Trans. Acoust., Vol. ASSP-32, 1201-1212, 1994.

19. Sano, A., "Optimally regularized inverse of singular value decomposition and application to signal extrapolation," Signal Processing, Vol. 30, 163-176, 1993.
doi:10.1016/0165-1684(93)90145-Z

20. Ferreira, P. J. S. G., "The stability of a procedure for the recovery of lost samples in band-limited signals," Signal Processing, Vol. 40, 195-205, 1994.
doi:10.1016/0165-1684(94)90067-1

21. Landau, H. J., "Extrapolating a band-limited function from its samples taken in a finite interval," IEEE Trans. Inf. Theory, Vol. IT-32, 464-470, 1986.
doi:10.1109/TIT.1986.1057205

22. Bucci, O. M., G. D'Elia, and M. D. Migliore, "A new strategy to reduce the truncation error in near-field/far-field transformations," Radio Science, Vol. 35, 3-17, 2000.
doi:10.1029/1999RS900073

23. Bucci, O. M.G. D'Elia, and M. D. Migliore, "Experimental validation of a new technique to reduce the truncation error in near-field far-field transformation," Proc. of AMTA 1998, 180-185, 1998.

24. Bolomey, J. C., O. M. Bucci, L. Casavola, G. D'Elia, M. D. Migliore, and A. Ziyyat, "Reduction of truncation error in near-field measurement of antennas of base-station mobile communication systems," IEEE Trans. Antennas Propagat., Vol. 52, 593-602, 2004.
doi:10.1109/TAP.2004.823999

25. Golub, G. H. and C. F. Van Loan, Matrix Computations, John Hopkins University Press, 1996.

26. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, Cambridge University Press, 1999.

27. Hansen, P. C., Rank-deficient and Discrete Ill-posed Problems, SIAM, 1998.

28. Tikhonov, A. N. and V. Y. Arsenin, Solutions of Ill-posed Problems, Winston, 1977.

29. Paris, D. T., W. M. Leach, Jr., and E. B. Joy, "Basic theory of probe-compensated near-field measurements," IEEE Trans. Antennas Propagat., Vol. AP-26, 373-379, 1978.
doi:10.1109/TAP.1978.1141855

30. Gatti, M. S. and Y. Rahmat-Samii, "FFT applications to planepolar near-field antenna measurements," IEEE Trans. Antennas Propagat., Vol. AP-36, 781-791, 1988.
doi:10.1109/8.1180