Vol. 72
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-03-28
Phase-Matching the Hybrid Fv24/S22 FDTD Algorithm
By
, Vol. 72, 307-323, 2007
Abstract
This work demonstrates an efficient and simple approach for applying high-order extended-stencil FDTD algorithms near planar perfect electric conductors (PEC) boundaries while minimizing spurious reflections off the interface between the high-order grid and the mandated special compact cells around PEC boundaries. This proposed approach eliminates the need for cumbersome subgridding implementations and provides a superior alternative in minimizing spurious reflections without any added modeling complexity or computing costs. The high-order algorithm used in this work is the recently proposed three-dimensional FV24 algorithm and the proposed approach can be easily extended to the standard Fang high-order FDTD algorithm which represents a special case of the highly phasecoherent FV24 algorithm.
Citation
Mohammed Hadi, and R. Dib, "Phase-Matching the Hybrid Fv24/S22 FDTD Algorithm," , Vol. 72, 307-323, 2007.
doi:10.2528/PIER07031601
References

1. Shlager, K. L. and J. B. Schneider, "Comparison of the dispersion properties of several low-dispersion finite-difference time-domain algorithms," IEEE Trans. Antennas Propagat., Vol. 51, No. 3, 642-653, 2003.
doi:10.1109/TAP.2003.808532

2. Forgy, E. A. and W. C. Chew, "A time-domain method with isotropic dispersion and increased stability on an overlapped lattice," IEEE Trans. Antennas Propagat., Vol. 50, No. 7, 983-996, 2002.
doi:10.1109/TAP.2002.801373

3. Cole, J. B., "A high-accuracy realization of the Yee algorithm using non-standard finite differences," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 6, 991-996, 1997.
doi:10.1109/22.588615

4. Hadi, M. F. and M. Piket-May, "A modified FDTD (2,4) scheme for modeling electrically large structures with high-phase accuracy," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 254-264, 1997.
doi:10.1109/8.560344

5. Haussmann, G. J., "A dispersion optimized three-dimensional finite-difference time-domain method for electromagnetic analysis," Ph.D. dissertation, 1998.

6. Abd El-Raouf, H. E., E. A. El-Diwani, A. Ammar, and F. El- Hefnawi, "A low-dispersion 3-D second-order in time fourthorder in space FDTD scheme (m3d24)," IEEE Trans. Antennas Propagat., Vol. 52, No. 7, 1638-1646, 2004.
doi:10.1109/TAP.2004.831286

7. Hadi, M. F., "A super-phase coherent 3d high-order FDTD algorithm," 23rd International Review of Progress in Applied Computational Electromagnetics, No. 3, 2007.

8. Shi, Y. and C. H. Liang, "A strongly well-posed PML with unsplitfield formulations in cylindrical and spherical coordinates," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1761-1776, 2005.
doi:10.1163/156939305775696784

9. Zhang, Y., W. Ding, and C. H. Liang, "Study on the optimum virtual topology for MPI based parallel conformal FDTD algorithms on PC clusters," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1817-1831, 2005.
doi:10.1163/156939305775696856

10. Georgakopoulos, S. V., C. R. Birtcher, C. A. Balanis, and R. A. Renaut, "HIRF penetration and PED coupling analysis for scaled fuslage models using a hybrid subgrid FDTD(2,2)/FDTD(2,4) method," IEEE Trans. Electromagn. Compat., Vol. 45, No. 2, 293-305, 2003.
doi:10.1109/TEMC.2003.811308

11. Abd El-Raouf, H. E., E. A. El-Diwani, A. E.-H. Ammar, and F. M. El-Hefnawi, "A FDTD hybrid m3d24-yee'' scheme with subgridding for solving large electromagnetic problems," Appl. Computat. Electromagn. Soc. J., Vol. 17, No. 1, 23-29, 2002.

12. Celuch-Marcysiak, M. and J. Rudnicki, "A study of numerical reflections caused by fdtd mesh refinements in 1d and 2d," 15th Ann. Conf. Microwave Radar Wireless Comm., No. 5, 626-629, 2004.
doi:10.1109/MIKON.2004.1357108

13. Hadi, M. F. and R. K. Dib, "Phase-matching the hybrid m24/s22 fdtd algorithm," 23rd International Review of Progress in Applied Computational Electromagnetics, No. 3, 2007.

14. Taflove, A., Computational Electrodynamics: The Finite- Difference Time-Domain Method, Artech House, 1995.

15. Fang, J., "Time domain finite difference computation for Maxwell's equations," Ph.D. dissertation, 1989.

16. Dey, S. and R. Mittra, "Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation," IEEE Microwave Guided Wave Lett., Vol. 8, No. 12, 415-417, 1998.
doi:10.1109/75.746760

17. Golestani-Rad, L., J. Rashed-Mohassel, and M. M. Danaie, "Rigorous analysis of EM-wave penetration into a typical room using FDTD method: the transfer function concept," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 913-926, 2006.
doi:10.1163/156939306776149851

18. Ojeda, X. and L. Pichon, "Combining the finite element method and a Pade approximation for scattering analysis application to radiated electromagnetic compatibility problems," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 10, 1375-1390, 2005.
doi:10.1163/156939305775525918