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Abstract—This work demonstrates an efficient and simple approach
for applying high-order extended-stencil FDTD algorithms near
planar perfect electric conductors (PEC) boundaries while minimizing
spurious reflections off the interface between the high-order grid and
the mandated special compact cells around PEC boundaries. This
proposed approach eliminates the need for cumbersome subgridding
implementations and provides a superior alternative in minimizing
spurious reflections without any added modeling complexity or
computing costs. The high-order algorithm used in this work is the
recently proposed three-dimensional FV24 algorithm and the proposed
approach can be easily extended to the standard Fang high-order
FDTD algorithm which represents a special case of the highly phase-
coherent FV24 algorithm.

1. INTRODUCTION

Several FDTD algorithms have been developed over the past decade
to minimize the loss of phase coherence in wave solutions due to
numerical dispersion. Shlager and Schneider [1] compared some of the
more prominent low-dispersion algorithms and compared their phase
coherence in both single-frequency and wideband applications. While
some of the analyzed algorithms that restricted their stencils to a single
Yee cell did extremely well in single-frequency applications [2, 3], it was
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the two-dimensional extended-stencil M24 algorithm [4] that excelled
in wideband suitability. Since its introduction two attempts were
made in the past to extend the M24 algorithm to 3D space [5, 6].
However, it was only recently made possible in a way that preserved
the M24’s superior phase coherence in single-frequency applications
while maintaining its wideband applicability [7]. This new algorithm
was based on a finite-volumes approach and was named the FV24
algorithm.

The main challenge to the extended-stencil M24 and FV24
algorithms, however, is porting the wealth of FDTD tools (e.g., recent
advances in PML design [8] and FDTD parallel coding [9]) that were
developed over the decades for the standard single-cell Yee scheme
(S22 for second-order differencing in both time and space). It was
suggested in [4] that this challenge could be simply resolved by
introducing minimal S22 buffer zones where needed in an otherwise
global M24 (or FV24) implementation. Haussmann in [5], however,
demonstrated experimentally that such an approach would cause
measurable reflections at the interface between the high-order and
low-order subdomains of the FDTD lattice. Another approach was
demonstrated by Georgakopoulos et al. and Abd El-Raouf et al. [10, 11]
in using a fine-meshed S22 buffer zone against a globally fourth-
order domain. There too spurious reflections were possible if extra
care was not taken to ensure exact phase velocity matching between
the coarsely-meshed and finely-meshed FDTD lattice subdomains as
demonstrated by Celuch-Marcysiak and Rudnicki [12]. The common
cause of spurious reflections in both hybrid high-order/low-order
approaches was recently investigated and effectively cured by Hadi
and Dib [13] for the two-dimensional hybrid M24/S22 algorithm. This
approach will be further developed and extended in the present work
to the more challenging three-dimensional hybrid FV24/S22 algorithm,
by analyzing the spurious reflections off the planar FDTD lattice
interfaces and developing special algorithm modifications to eliminate
these phase mismatch-borne anomalies.

2. REVIEW OF THE FV24 ALGORITHM

This algorithm is the natural 3D extension to the 2D high-order M24
algorithm. Whereas the M24 update equations were derived from
concentric loop integrals around the field node of interest, the FV24
update equations are derived from concentric surface integrals. For
example, the update equation for an Ex field node would be

ε

∆t

[
Ex|n+ 1

2 − Ex|n−
1
2

]
= DyHz − DzHy, (1)
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where Dy and Dz are difference operators that represent weighted
contributions of the field nodes occupying the surrounding concentric
surfaces shown in Fig. 1. Expanding the operator Dy as an example
we get

Dy = KaD
a
y + KbD

b
y + KcD

c
y + KdD

d
y (2)

with
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1
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where the non-staggered i, j, k and n indices are omitted for cleaner
notation and Ka = 1 − Kb − Kc − Kd.

Following the example of Taflove [14] by inserting plane wave trial
solutions into the resulting update equations the difference operators
can be transformed into the discrete operators

Dt = 
sin ω∆t

2

∆t/2
(7)

and

Dx = Ka
sin βxh

2

h/2
+ 

sin 3βxh
2

3h/2
·(

Kb +
Kc

2
(cos βyh + cos βzh) + Kd cos βyh cos βzh

)
(8)

Dy = Ka
sin βyh

2

h/2
+ 

sin 3βyh
2

3h/2
·(

Kb +
Kc

2
(cos βxh + cos βzh) + Kd cos βxh cos βzh

)
(9)
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Figure 1. The concentric enclosing surfaces of an FV24 cell around an
Ex component (an h3 inner volume within an extended (3h)3 volume).
Small letter designations are repetitive on each of the 4 sides and
correspond to the weighted H-field groupings in the FV24 update
equation. A uniform ∆x = ∆y = ∆z = h is assumed.

Dz = Ka
sin βzh

2

h/2
+ 

sin 3βzh
2

3h/2
·(

Kb +
Kc

2
(cos βxh + cos βyh) + Kd cos βxh cos βyh

)
, (10)

where  =
√
−1. The dispersion relation of the resulting algorithm can

be concisely written using (7)–(10) as [5]

µεD2
t = D2

x + D2
y + D2

z (11)

and the stability criterion as

∆t ≤ 2
√

µε√
(D2

x + D2
y + D2

z)max

=
h

c
√

3
3

|3 − 4Kb − 2Kc − 4Kd|
. (12)
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Table 1. Optimum K-values for the FV24 algorithm at different
resolution factors.

R Kb Kc Kd

5 −0.132595513 −0.034455612 0.057380229
10 −0.108982724 −0.024711001 0.038444028
15 −0.105291887 −0.023367479 0.035822568
20 −0.104042707 −0.022923377 0.034956192
25 −0.103471738 −0.022722165 0.034563713
30 −0.103163470 −0.022613994 0.034352733
35 −0.102978234 −0.022549148 0.034226265

To complete the FV24 algorithm appropriate values for the weighting
parameters Kb, Kc and Kd need to be found with the aim of optimizing
phase coherence of the algorithm’s wave solutions. Table 1 lists such
values for a range of FDTD resolution factors [7].

It is worth noting here that the specific choices Kb = −1/8,
Kc = Kd = 0 will produce Fang’s high-order S24 algorithm [15] whereas
the choices Kb = Kc = Kd = 0 will produce Yee’s S22 algorithm.
The clear advantage of the M24 and FV24 high-order algorithms can
be evidenced by the direct and computationally efficient modeling
of wave propagation in buildings [4], compared to the indirect or
frequency-limited approaches (e.g., [17]) mandated by the prohibitively
huge computational demands of the standard FDTD algorithm when
modeling electrically large structures.

3. NUMERICAL REFLECTION ANALYSIS

A straightforward hybrid FV24/S22 implementation would constitute
a global FV24 algorithm application on a standard FDTD gird that
is punctuated by minimal S22 subdomains. In such subdomains
where the extended-stencil FV24 implementation is either inconvenient
or impossible, the modeling task is delegated to the compact S22

algorithm. Due to the incompatible numerical dispersion behavior of
the two mated algorithms, however, spurious reflections are expected
at the common interface.

Let us consider the planar interface demonstrated in Fig. 2
between two zones in a homogeneous FDTD lattice in which the left
zone field nodes are updated using the FV24 algorithm and the right
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Figure 2. Interpretation of a plane wave interaction with a planar
interface separating two similarly gridded homogeneous zones with
different FDTD schemes. Field nodes on the y-axis are assumed part
of zone 2.

zone field nodes (including those lying on the planar interface) are
updated using the S22 algorithm. It has been shown in [13] that
such FDTD algorithm inhomogeneity will manifest itself in the form
of spurious reflections off the planar interface. For the particular
geometry of Fig. 2 these spurious reflections could be accurately
predicted using

Γ =
1 − κ

1 + κ
with κ =

cos θP
t cos

β2xh

2

cos θP
i cos

β1xh

2

. (13)

For any wave incidence angle θi the numerical phase velocity
components β1x and β1y could be calculated from the left-zone
dispersion relation. The right-zone dispersion relation is then used to
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Figure 3. Numerical reflection coefficient vs. θi across an FV24/S22

hybrid algorithm interface parallel to the xy–plane before (solid) and
after (dashed) modification at the resolution factors (from top to
bottom) R = 5, 10, 20, 30, 40, 50, 100.

calculate β2x and θt after enforcing the boundary condition β2y = β1y.
The incident and transmitted wave vectors’ polarization angles are
then calculated from

θP
i = tan−1 Dy

Dx

∣∣∣∣
zone 1

and θP
t = tan−1 Dy

Dx

∣∣∣∣
zone 2

, (14)

where Dx and Dy are given by (8)–(9) for zone 1 and by

Dx = 
sin βxh

2

h/2
and Dy = 

sin βyh
2

h/2
(15)

for zone 2, and finally, the numerical reflection coefficient is evaluated
using (13). Fig. 3 illustrates this numerical reflection variation vs. the
wave incidence angle at different resolution factors (solid lines). For
every resolution factor the numerical reflection always degenerate to
total reflection as the incidence angle approaches π/2, which would
cause severe distortions to the hybrid algorithm’s wave solutions.

For this disruptive reflection to be eliminated both joined
algorithms must have precisely matched dispersion characteristics
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Figure 4. An FDTD lattice near a PEC edge extending along the
z-axis. The three different subdomain regions require three different
sets of update equations.

within the common interface. Fig. 4 illustrates a classic challenging
situation where reliable update equations are desired near perfectly
conducting boundaries. The two grids of the figure represent
consecutive cuts along the z-axis. While the extended-stencil FV24
algorithm could be freely implemented within the interior Region 1
subdomain, special update equations are required for the planar
Region 2 and axial (spinal) Region 3 subdomains. Furthermore, these
update equations must be drafted such that their tangential dispersion
characteristics are precisely matched across each of the subdomain two-
dimensional interfaces.

4. PHASE-MATCHING AT PLANAR BOUNDARIES

An appropriate set of phase-matched update equations for a Region 2
subdomain parallel to the yz-plane can be written with the help of
Fig. 5 as

ε
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Figure 5. Surrounding H nodes used for Ex, Ey and Ez update
equations (16)–(18) for an yz-plane-parallel Region 2 subdomain.
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with Kb
a = 1 − Kb

b − Kb
c . The update equations for the H-field

components can be written from the above with the direct substitutions
ε → −µ, E → H and H → E while leaving all indices, subscripts and
coefficients untouched. The update equations for the xy and xz-planes
can be similarly derived. Key features of the above update equations
are

(i) Stencil extension along the normal x-axis is limited to one FDTD
cell preventing its encroaching beyond the PEC boundary.

(ii) The selection of the included field nodes is carefully tailored to
allow perfect tangential phase-matching with simple and logical
choices of the weighting Kb parameters.

The corresponding discrete operators of the above special update
equations are

Dx = 
sin

βxh

2
h/2

(19)

Dy = Kb
a

sin
βyh

2
h/2

+ 
(
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a
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2
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+ 
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c cos βyh
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3βzh

2
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, (21)

with the dispersion relation obtainable from (11) and the stability
criterion governed by†

∆t ≤ h

c

1√
1 + 2

(
1 − 4Kb

b/3 − 2Kb
c/3

)2
. (22)

To determine the appropriate Kb-values for perfect phase-
matching at the yz-planar interface, the FV24 discrete operators (9)–
† The eventual choices of Kb

b,c will maintain the stability criterion (12) fully contained

within (22) for all resolution factors of Table 1, ensuring overall algorithm stability when
the chosen time step is based on (12).
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(10) are re-written as βx → 0,
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and compared to (20)–(21) which would readily yield

Kb
b = Kb +

Kc

2
and Kb

c = Kd +
Kc

2
. (25)

Fig. 3 compares the post-phase-matching reflections (dashed lines)
with the FV24/S22 reflections discussed earlier, clearly demonstrating
the advantage of tangential dispersion matching across such planar
interfaces. The only remaining (and relatively tame) cause of numerical
reflections is the jump in stencil depth along the normal direction from
three-cells to one-cell depth.

5. PHASE-MATCHING AT AXIAL EDGES

Taking the z-axial edge and the corresponding Region 3 of Fig. 4 as
an example, an appropriate set of update equations that would have
one-cell stencil depth along both x and y-axes while maintaining a
three-cells stencil depth along the z-axis would be
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with matching H-components update equations. The corresponding
discrete operators would be

Dx = 
sin

βxh

2
h/2

(29)

Dy = 
sin

βyh

2
h/2

(30)

Dz = (1 − Ke)
sin

βzh

2
h/2

+ Ke
sin

3βzh

2
3h/2

. (31)

Following the example of the previous section by comparing the
above Dz discrete operator with those of the adjacent Region 1 or
Region 2 of Fig. 4 after setting the limits βx → 0 and βy → 0 we can
deduce the simple phase-matching condition

Ke = Kb
b + Kb

c = Kb + Kc + Kd. (32)

The update equations and discrete operators of the x and y-axial
subdomains would provide the same condition.

The analysis and derived update equations modifications of this
section and the last can be straightforwardly applied towards the
hybrid three-dimensional S24/S22 algorithm by simply setting Kb =
−1/8 and Kc = Kd = 0.

6. NUMERICAL VALIDATION

To validate the proposed hybrid FV24/S22 phase-matching, an extreme
yet simple test is chosen in the form of a 3D metallic resonator.
The resonator walls are made of perfect conductors with dimensions
λ × λ × 10λ. The FDTD resolution factor used is R = 10 cells/λ and
the Gaussian input signal is injected at the location (λ/2, λ/2, λ/2)
with the measuring probe at the opposite symmetrical end of the
long resonator. Such a structure will serve our purposes well since
it provides relatively large interface surfaces for the volume. It also
furnishes a large number of reflections, especially at steep incidence
angles to compound and highlight any generated spurious reflections.

Fig. 6 compares several FV24/S22 hybrid variants to the
benchmark S22 results in terms of the critical criterion of maintaining
non-growing resonance levels as time marches on. From the figure the
worst performing variant is the straight hybridding with no attempted
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Figure 6. Resonator probe signal (Ez) for the FDTD algorithm
variants: a) S22, b) FV24/S22 with no phase-matching, c) FV24/S22

with planar phase-matching, d) FV24/S22 with both planar and axial
edges phase-matching. Resonator input was a band-limited Gaussian
pulse.

phase-matching (Fig. 6b), where the field solution (at the probe) starts
growing almost immediately, and uncontrollably so beginning at the
time index n = 1, 000. In comparison, the proposed phase matching
at the planar and axial hybrid algorithm interfaces helped maintain
non-growing field solutions till beyond n = 2, 000 time steps which
corresponds to approximately 10 full reflection-intensive traversings
of the entire length of the metallic resonator (Fig. 6d). Fig. 6c
demonstrates the negative effect of omitting phase-matching along the
axial edges. Eventually, however, even the tame interface reflections
due to the normal-direction phase mismatches will accumulate large
enough levels to start disrupting the collected data in this extreme
test.

To verify the accuracy of the phase-matched hybrid FV24/S22

algorithm in predicting the resonator modes, Fig. 7 displays the FFT
responses of the collected Ez data (dashed curves) based on 2,048 time
steps for the hybrid FV24/S22 and S22 algorithms. Although the data
series is short by FFT standards the hybrid algorithm managed to keep
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Figure 7. Spectral response of the phase-matched FV24/S22 (left)
and S22 (right) algorithms. Dashed curves: FFT based on 2,048 time
steps. Solid curves: Frequency resolution enhancement based on 31
FFT data points and a 15th order diagonal Padé interpolant.

track of more resonance modes than the S22 algorithm, mainly due to
the former’s inherent superior phase coherence. Fig. 7 also displays
higher resolution spectral responses (solid curves) that were obtained
using Dey and Mittra’s Padé-on-FFT approach [16] which basically
applies a Padé rational function approximation [18] on a coarse FFT
output with the objective of boosting its frequency resolution. In
this case 31 FFT data points were used in conjunction with a 15th
order diagonal Padé approximation‡. The resulting interpolations
clearly demonstrate the dispersive nature of the regular FDTD (S22)
algorithm when attempting to model electrically large structures using
a coarse wavelength resolution—an inherent shortcoming that the
FV24 algorithm was specifically designed to overcome.

7. CONCLUSION

The one major obstacle standing in the way of wide adoption of
high-order FDTD algorithms has always been the difficulty in dealing
with perfectly conducting boundaries. Until recently the work-around
solution has been using cumbersome subgridding techniques within
low-order FDTD buffer layers around PEC objects, where the low
order layers are meant to guard against FDTD cell enchroachment
beyond the PEC boundaries and the subgridding is meant for a rough
‡ Higher Padé orders will allow detecting more resonance modes as desired. It would be
a futile exercise here though since the odd resonator dimensions produces many closely
packed modes.
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matching technique between the high-order and low-order zones.
Recently, however, the very cause of FDTD hybrid interface

mismatches has been investigated and quantified for two-dimensional
implementations—namely, the differences in normal and tangential
numerically rendered phase velocities across the interface as dictated
by the respective dispersion relations. It was found that while normal
phase mismatches are relatively benign, tangential mismatches on the
other hand are serious contributors to FDTD solution errors. To
eliminate these tangential mismatches, the idea of mixed differencing
operators within the same update equation as a simpler and superior
substitute to subgridding was introduced and applied to the two
dimensional hybrid M24/S22 algorithm.

In this work, these analysis were carried over and applied to
the more challenging three dimensional hybrid FV24/S22 algorithm.
Special phase-matching modifications to the buffer layers’ update
equations were proposed and experimentally validated, which unlike in
the M24/S22 case, did not require the extra step of calculating specially
optimized weighting parameters. The proposed modifications could
be easily applied to the hybrid S24/S22 algorithm with a simple K-
parameters substitution and the methodology could be easily adapted
to other hybrid high-order/low-order FDTD variants.
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