Vol. 71
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-03-14
Towards the Characteristic Dispersion Relation for Step-Index Hyperbolic Waveguide with Conducting Helical Winding
By
, Vol. 71, 251-275, 2007
Abstract
Astudy is presented of the light wave propagation in a new type of dielectric optical waveguide with hyperbolic kind of crosssection. Further, the waveguide is assumed to have a conducting helical winding. The analysis essentially requires the use of elliptical coordinate system, which finally results into Mathieu and modified Mathieu functions as the representatives of the electromagnetic fields within the lightguide. Field components in the different sections of the guide are deduced, and the characteristic dispersion equation for the system is derived. The preliminary investigation on such type of waveguide throws the idea that the presence of helix pitch angle (which serves the purpose of additional controlling parameter for the guide) in the dispersion relation would greatly affect the propagation characteristics of the guide, and this can be of great practical importance.
Citation
Deepak Kumar, Pankaj Choudhury, and Faidz Abd-Rahman, "Towards the Characteristic Dispersion Relation for Step-Index Hyperbolic Waveguide with Conducting Helical Winding," , Vol. 71, 251-275, 2007.
doi:10.2528/PIER07030504
References

1. Yeh, C., "Modes in weakly guiding elliptical fibers," Opt. Quantum Electron., Vol. 8, 43-47, 1976.
doi:10.1007/BF00620439

2. Ikuno, H. and K. Nakashima, "Numerical analysis of ellipticallycored optical fiber," Res. Rep. Inst. Elect. Eng. (Jpn.), Vol. EMT83-4, 83-4, 1983.

3. Kumar, A. and R. K. Varshney, "Propagation characteristics of highly elliptical core optical waveguides: Ap erturbation approach," Opt. Quantum Electron., Vol. 16, 349-354, 1984.
doi:10.1007/BF00620076

4. Dyott, R. B., "Cutoff of the first order modes in elliptical dielectric waveguide: an experimental approach," Electron. Lett., Vol. 26, 1721-1723, 1990.
doi:10.1049/el:19901099

5. Lim, M. H., S. C. Yeow, P. K. Choudhury, and D. Kumar, "On the dispersion characteristics of tapered core dielectric optical fibers," J. Electromag. Waves and Appl., Vol. 20, 1597-1609, 2006.
doi:10.1163/156939306779292417

6. Goell, J. E., "Acircular-harmonic computer analysis of rectangular dielectric waveguides," Bell Syst. Tech. J., Vol. 48, 2133-2160, 1969.

7. Goell, J. E., "Slab-coupled waveguides," Bell. Syst. Tech. J., Vol. 53, 645-674, 1974.

8. Borland, W. C., D. E. Zelmon, C. J. Radens, J. T. Boyd, and H. E. Jackson, "Properties of four-layer planar optical waveguides near cutoff," IEEE J. Quantum Electron., Vol. QE-23, 1172-1179, 1978.

9. Kumar, A., K. Thyagarajan, and A. K. Ghatak, "Analysis of rectangular core dielectric waveguides: an accurate perturbation approach," Opt. Lett., Vol. 8, 63-65, 1983.

10. Choudhury, P. K., "On the modal behaviour of rectangular and deformed planar waveguides," Microw. and Opt. Tech. Lett., Vol. 10, 333-335, 1995.

11. James, J. R. and I. N. L. Gallett, "Modal analysis of triangularcored glass-fiber waveguides," Proc. IEE, Vol. 120, 1362-1370, 1973.

12. Dyott, R. B., "Glass-fiber waveguide with triangular core," Electron. Lett., Vol. 9, 288-290, 1973.
doi:10.1049/el:19730209

13. Ojha, S. P.P. K. Choudhury, and P. Khastgir, "Glass fibers of triangular cross-sections with metal-loading on one or more sides — Acomparativ e modal study," Proc. SPIE, Vol. 1580, 278-287, 1991.

14. Shukla, P. K., P. K. Choudhury, P. Khastgir, and S. P. Ojha, "Comparative aspects of a metal-loaded triangular waveguide with uniform and non-uniform distribution of Goell's matching points," J. Inst. Electron. & Telecommun. Engg., Vol. 41, 217-220, 1995.

15. Choudhury, P. K., P. Khastgir, S. P. Ojha, and L. K. Singh, "Analysis of the guidance of electromagnetic waves by a deformed planar waveguide with parabolic cylindrical boundaries," J. Appl. Phys., Vol. 71, 5685-5688, 1992.
doi:10.1063/1.350502

16. Choudhury, P. K., P. Khastgir, and S. P. Ojha, "Amathematically rigorous cutoff analysis of parabolic cylindrical waveguides," J. Phys. Soc. Jpn., Vol. 61, 3874-3877, 1992.
doi:10.1143/JPSJ.61.3874

17. Choudhury, P. K., P. Khastgir, S. P. Ojha, and K. S. Ramesh, "An exact analytical treatment of parabolically deformed planar waveguides near cutoff," Optik, Vol. 95, 147-151, 1994.

18. Choudhury, P. K. and R. A. Lessard, "Parabolic cylindrical waveguides: revisited," Optik, Vol. 112, 358-361, 2001.

19. Misra, V., P. K. Choudhury, P. Khastgir, and S. P. Ojha, "Modal propagation analysis of a waveguide with a regular pentagonal cross-section with conducting and non-conducting boundaries," Microw. and Opt. Tech. Lett., Vol. 8, 280-282, 1995.

20. Choudhury, P. K., "On the preliminary study of a dielectric guide having a Piet Hein geometry," Ind. J. Phys., Vol. 71B, 191-196, 1997.

21. Misra, V., P. K. Choudhury, P. Khastgir, and S. P. Ojha, "Electromagnetic wave propagation through a dielectric guide having Piet Hein cross-sectional geometry," Microw. and Opt. Tech. Lett., Vol. 12, 250-254, 1996.
doi:10.1002/(SICI)1098-2760(19960805)12:5<250::AID-MOP2>3.0.CO;2-9

22. Choudhury, P. K. and O. N. Singh, "Some multilayered and other unconventional lightguides," Electromagnetic Fields in Unconventional Structures and Materials, 289-357, 2000.

23. Kumar, D., "Apreliminary ground work for the study of the characteristic dispersion equation for a slightly elliptical sheath helix slow-wave structure," J. Electromag. Waves and Appl., Vol. 18, 1033-1044, 2004.
doi:10.1163/1569393042955441

24. Kumar, D. and O. N. Singh II, "Analysis of the propagation characteristics of a step-index waveguide of annular circular crosssection with conducting helical windings on the inner and outer boundary surfaces between the guiding and the non guiding regions," J. Electromag. Waves and Appl., Vol. 18, 1655-1669, 2004.
doi:10.1163/1569393042955199

25. Watkins, D. A., Topics in Electromagnetic Theory, 39-62, 39-62, 1958.

26. Brillouin, L., Wave Propagation in Periodic Structures, Dover Publications, 1953.

27. Kornhauser, E. T., "Radiation field of helical antennas with sinusoidal current," J. Appl. Phys., Vol. 22, 887-891, 1951.
doi:10.1063/1.1700068

28. Mathers, G. W. C. and G. S. Kino, "Some properties of a sheath helix with a center conductor or External shield," Report No. 65, No. '' Report 65, 1953.

29. Kumar, D. and O. N. Singh II, "Some special cases of propagation characteristics of an elliptical step-index fiber with a conducting helical winding on the core-cladding boundary — An analytical treatment," Optik, Vol. 112, 561-566, 2001.

30. Kumar, D. and O. N. Singh II, "Modal characteristic equation and dispersion curves for an elliptical step-index fiber with a conducting helical winding on the core-cladding boundary — An analytical study," J. Light. Tech., Vol. 20, 1416-1424, 2002.
doi:10.1109/JLT.2002.800799

31. Kumar, D. and O. N. Singh II, "Elliptical and circular step-index fibers with conducting helical windings on the core-cladding boundaries for different winding pitch angles — Acomparativ e modal dispersion analysis," Progress In Electromagnetics Research, Vol. 52, 1-21, 2005.
doi:10.2528/PIER04052002

32. Verma, K. K. and D. Kumar, The Elements of Vector Calculus, AITBS Publisher and Distributor, 2005.