Vol. 69
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-12-16
The Multiresolution Frequency Domain Method for General Guided Wave Structures
By
, Vol. 69, 55-66, 2007
Abstract
Am ultiresolution frequency domain (MRFD) analysis similar to the finite difference frequency domain (FDFD) method is presented. This new method is derived by the application of MoM to frequency domain Maxwell's equations while expanding the fields in terms of biorthogonal scaling functions. The dispersion characteristics of waveguiding structures are analyzed in order to demonstrate the advantages of this proposed MRFD method over the traditional FDFD scheme.
Citation
Mesut Gokten, Atef Elsherbeni, and Ercument Arvas, "The Multiresolution Frequency Domain Method for General Guided Wave Structures," , Vol. 69, 55-66, 2007.
doi:10.2528/PIER06112002
References

1. Steinberg, B. Z. and Y. Leviatan, "On the use of wavelet expansions in the method of moments," IEEE Trans. Antennas Propagat., Vol. 41, No. 5, 610-619, 1993.
doi:10.1109/8.222280

2. Sabetfakhri, K. and L. P. B. Katehi, "Analysis of integrated millimeter-wave and submillimeter-wave waveguides using orthonormal wavelet expansions," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 12, 2412-2422, 1994.
doi:10.1109/22.339775

3. Wagner, R. L. and W. C. Chew, "Study of wavelets for the solution of electromagnetic integral equations," IEEE Trans. Antennas and Propagat., Vol. 43, No. 8, 802-810, 1995.
doi:10.1109/8.402199

4. Wei, X. C. and E. P. Li, "Fast solution for large scale electromagnetic scattering problems using wavelet transform and its precondition," Progress In Electromagnetics Research, Vol. 38, 253-267, 2002.
doi:10.2528/PIER02042602

5. Krumpholz, M. and L. P. B. Katehi, "MRTD: new timedomain schemes based on multiresolution analysis," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 4, 555-571, 1996.
doi:10.1109/22.491023

6. Fujii, M. and W. J. R. Hoefer, "Athree-dimensional Haar-waveletbased multiresolution analysis similar to the FDTD method — derivation and application," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 12, 2463-2475, 1998.
doi:10.1109/22.739236

7. Dogaru, T. and L. Carin, "Multiresolution time-domain using CDF biorthogonal wavelets," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 5, 902-912, 2001.
doi:10.1109/22.920147

8. Fujii, M. and W. J. R. Hoefer, "A wavelet formulation of the finite-difference method: Full-vector analysis of optical waveguide junctions," IEEE J. Quantum Electron., Vol. 37, No. 8, 1015-1029, 2001.
doi:10.1109/3.937391

9. Cao, Q., K. K. Tamma, P. K. A. Wai, and Y. Chen, "RCS scattering analysis using the three-dimensional MRTD scheme," J. of Electromagn. Waves and Appl., Vol. 17, No. 12, 1683-1701, 2003.
doi:10.1163/156939303322760218

10. Barba, I., J. Represa, M. Fujii, and W. J. R. Hoefer, "Multiresolution 2D-TLM technique using Haar wavelets," IEEE MTT-S Int. Microwave Symp. Dig., 243-246, 2000.

11. Pan, G. W., Wavelets in Electromagnetics and Device Modeling, John Wiley & Sons Inc., 2003.

12. Zhu, X., T. Dogaru, and L. Carin, "Analysis of the CDF biorthogonal MRTD method with application to PEC targets," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 9, 2015-2022, 2003.
doi:10.1109/TMTT.2003.815874

13. Daubechies, I., Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, 1992.

14. Tretiakov, Y., S. Ogurtsov, and G. Pan, "On samplingbiorthogonal time-domain scheme based on daubechies compactly supported wavelets," Progress In Electromagnetics Research, Vol. 47, 213-234, 2004.
doi:10.2528/PIER04020403

15. Pereda, J. A., A. Vegas, L. F. Velarde, and O. Gonzalez, "An FDFD eigenvalue formulation for computing port solutions in FDTD simulators," Microwave and Opt. Tech. Letters, Vol. 45, No. 4, 1-3, 2005.
doi:10.1002/mop.20704

16. Lui, M. L. and Z. Chen, "Adirect computation of propagation constant using compact 2-D full-wave eigen-based finite-difference frequency-domain technique," Int. Conf. on Comp. Electromagnetics and Its Applications, 2, 1999.

17. Asi, A. and L. Shafai, "Dispersion analysis of anisotropic inhomogeneous waveguides using compact 2D-FDTD," Electronics Letters, Vol. 28, 1451-1452, 1992.

18. Cangellaris, A. C., "Numerical stability and numerical dispersion of a compact 2-D/FDTD method used for the dispersion analysis of waveguides," IEEE Microwave and Guided Wave Letters, Vol. 3, 3-5, 1993.
doi:10.1109/75.180672

19. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill Book Company, 1961.