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Abstract—A multiresolution frequency domain (MRFD) analysis
similar to the finite difference frequency domain (FDFD) method is
presented. This new method is derived by the application of MoM to
frequency domain Maxwell’s equations while expanding the fields in
terms of biorthogonal scaling functions. The dispersion characteristics
of waveguiding structures are analyzed in order to demonstrate the
advantages of this proposed MRFD method over the traditional FDFD
scheme.

1. INTRODUCTION

Over the last decade, multiresolution analysis techniques have
successfully been applied to various computational electromagnetic
methods yielding significant computational CPU and memory savings,
compared to the traditional techniques. Multiresolution analysis
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has found application in the improvement of method of moments
(MoM) [1–4], finite difference time domain (FDTD) method [5–9] and
transmission line matrix (TLM) method [10]. The finite difference
frequency domain method, on the other hand, has not yet benefited
from the advantages of multiresolution analysis. In this paper,
we formulate a 3D frequency domain numerical method based on
multiresolution analysis from which a special case leads to the FDFD
method.

It was observed in [5] that the FDTD scheme can be derived by
applying MoM to Maxwell’s curl equations while using pulse functions
as a basis for the expansion of unknown fields. It is also possible to
show that the previous statement is true for FDFD scheme. Since
pulse functions are also the scaling functions of the Haar wavelet
bases, FDFD scheme can also be considered as multiresolution analysis
scheme based only on the scaling function and can be improved by
adding Haar wavelet functions to the expansion of the fields. One can
further improve the method by using the Cohen-Daubechies-Feauveau
(CDF) family of wavelets, which is the focus of this work.

2. FORMULATION

2.1. Wavelet Selection

In order to develop an efficient MRFD formulation, one should choose
the appropriate wavelet family from an ever-increasing number of
wavelets available. For an effective MRFD algorithm, the appropriate
wavelet base should have certain properties; such as compact
support, symmetry, interpolation property, regularity (smoothness)
and maximum number of vanishing moments.

The support of the wavelet basis is directly related to the
number of terms in the field components update equations. Since
a great number of terms in each update equation will increase
the computational burden and complicate the coding process, it is
preferable to have a compactly supported wavelet base. Symmetric
wavelet functions will ensure the symmetry of the formulation and
in return will simplify the modeling of symmetry and boundary
planes [11]. Compact support and symmetry are incompatible aspects
of orthogonal wavelet systems, with the Haar wavelets being the
exception. A biorthogonal wavelet base can sustain smooth, compact
and symmetric wavelets, which is the main reason for the choice of
biorthogonal wavelets over orthogonal ones.

In a wavelet expansion, the field value at a certain point is
generally reconstructed by a weighted sum of related neighboring
basis function coefficients, which requires a complex reconstruction



Progress In Electromagnetics Research, PIER 69, 2007 57

algorithm. However, the reconstruction algorithm is not essential if
the basis function satisfies the interpolation property, as in such cases
the basis function coefficients represent the field components at the
corresponding position of the grid [12]. Thus, a basis function equipped
with the interpolation property will not use the weighted sum and thus
yields a more efficient MRFD algorithm.

Two of the most desired properties of a wavelet family are high
regularity and maximum number of vanishing moments, owing to their
great effect on how well the wavelet expansion approximates a smooth
function. Unfortunately, wavelets do not accommodate both high
regularity and high number of vanishing moments concurrently and
it is unclear which property is more important [13–14]. Biorthogonal
wavelets have two dual scaling functions, which can have different
regularity properties. It is mentioned in [13] that, it is useful to reserve
the high regularity to the synthesis scaling function and maximum
vanished moments to the analysis scaling function.

Considering all the requirements mentioned above, Cohen-
Daubechies-Feauveau family of wavelets [13], in particular CDF(2, 2)
wavelet, is adopted for this work due to its minimal support.

2.2. 3D Formulation

In this section, derivation of the new method for lossless simple media
is presented. As an example, we can consider one of Maxwell’s time-
harmonic scalar equations:

jwεEx(x, y, z) =
∂Hz(x, y, z)

∂y
− ∂Hy(x, y, z)

∂z
. (1)

The field components on a Yee cell may be approximated in terms
of basis functions as

Ex(x, y, z) =
∑
i,j,k

Ex(i, j, k)φ̃i+1/2(x)φ̃j(y)φ̃k(z) (2a)

Hy(x, y, z) =
∑
i,j,k

Hy(i, j, k)φ̃i+1/2(x)φ̃j(y)φ̃k+1/2(z) (2b)

Hz(x, y, z) =
∑
i,j,k

Hz(i, j, k)φ̃i+1/2(x)φ̃j+1/2(y)φ̃k(z) (2c)

Here, the indexes i, j, k indicate the discrete space lattice related
to the space grid through x = i∆x, y = j∆y and z = k∆z. The
function φ̃n(x) is the scaled and shifted CDF dual scaling function
(φ̃(x)) defined as:



58 Gokten, Elsherbeni, and Arvas

φ̃n(x) = φ̃

(
x − n∆x

∆x

)
(3)

The field expansions are inserted into (1) and both sides are tested
with the scaling function according to Galerkin’s method. During the
sampling process, the following integrals are used:

∞∫
−∞

∂φ̃i′+1/2(y)
∂y

φi(y)dy =
na∑
l=1

a(l)
(
δi+l−1,i′ − δi−l,i′

)
(4)

∞∫
−∞

φi′(x)φ̃i(x)dx = ∆xδi,i′ (5)

where na is the stencil size and δi,i′ is the kronecker delta given by

δi,i′ =
{

1, i = i′

0, i �= i′ . (6)

Stencil sizes and a(l) coefficients of different CDF wavelets are
given in [7]. For CDF(2, 2) wavelet, stencil size is 3 and a(l) coefficients
are listed in Table 1.

Table 1. The a(l) coefficients.

l 1 2 3
a(l) 1.2291667 −0.0937500 0.0104167

We can now continue the derivation by testing the left-hand side
of (1) according to MoM, such that

jwε

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ex(x, y, z)φi+1/2(x)φj(y)φk(z)dxdydz

= jwε

∞∫
−∞

∞∫
−∞

∞∫
−∞


∑

i,j,k

Ex(i, j, k)φ̃i+1/2(x)φ̃j(y)φ̃k(z)




φi+1/2(x)φj(y)φk(z)dxdydz

= jwεEx(i, j, k)∆x∆y∆z (7)
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where φn(x) is the scaled and shifted CDF scaling function (φ(x))
defined similar to (3). Testing the first term of the right-hand side of
(1) yields:

∞∫
−∞

∞∫
−∞

∞∫
−∞

∂Hz(x, y, z)
∂y

φi+1/2(x)φj(y)φk(z)dxdydz

=

∞∫
−∞

∞∫
−∞

∞∫
−∞

∂

∂y


∑

i,j,k

Hz(i, j, k)φ̃i+1/2(x)φ̃j+1/2(y)φ̃k(z)




φi+1/2(x)φj(y)φk(z)dxdydz

= ∆x∆z

na∑
l=1

a(l) [Hz(i, j + l − 1, k) − Hz(i, j − l, k)] . (8)

Testing the second term of the right-hand side of (1) similarly
yields:

∞∫
−∞

∞∫
−∞

∞∫
−∞

∂Hy(x, y, z)
∂z

φi+1/2(x)φj(y)φk(z)dxdydz =

∆x∆y

na∑
l=1

a(l) [Hy(i, j, k + l − 1) − Hy(i, j, k − l)] . (9)

Equating (1), (7), (8) and (9) results in the MRFD update
equation:

Ex(i, j, k) =
1

jwε




na∑
l=1

a(l) [Hz(i, j + l − 1, k) − Hz(i, j − l, k)]

∆y

−

na∑
l=1

a(l) [Hy(i, j, k + l − 1) − Hy(i, j, k − l)]

∆z


 . (10)

The remaining five update equations, which are not listed here due
to space saving considerations, can be derived similarly by applying the
same procedure to the rest of the scalar Maxwell’s equations.
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2.3. 2D Formulation

The determination of the dispersion characteristics of waveguiding
structures is a fundamental problem in microwave engineering
applications. Furthermore, these characteristics (propagation
constant, mode patterns, characteristic impedance, etc.) can be
used as port data for 3D simulation of microwave devices [15].
Since such problems are well-suited for frequency domain techniques,
characterization of guided wave structures is considered for validation
of the proposed method.

The eigen-based finite difference frequency domain method was
proposed to solve the propagation characteristics of guided wave
structures [16]. For the MRFD solution of the problem, a similar
approach is adopted. Assuming that the waveguiding structure is
uniform along z axis and the wave propagates in positive z direction,
the electric and magnetic fields inside guided wave structure can be
expressed as:

�E(x, y, z) = [Ex(x, y)x̂ + Ey(x, y)ŷ + Ez(x, y)ẑ] e−jβz (11a)
�H(x, y, z) = [Hx(x, y)x̂ + Hy(x, y)ŷ + Hz(x, y)ẑ] e−jβz (11b)

where β is the propagation constant. Time harmonic Maxwell’s
equations for simple dielectric media are:

∇× �E = −jωµH, ∇× �H = jωεE (12a)

∇ · �D = 0, ∇ · �B = 0 (12b)

in which the space derivatives with respect to z can be replaced by
−jβ (i.e., ∂/∂z = −jβ).

Inserting (11) into (12) yields the following scalar equations:

βEx = wµyHy + j
∂Ez

∂x
(13a)

βEy = −wµxHx + j
∂Ez

∂y
(13b)

βHx = −wεyEy + j
∂Hz

∂x
(13c)

βHy = wεxEx + j
∂Hz

∂y
(13d)

βEz = −jεx
∂Ex

∂x
− jεy

∂Ey

∂y
(13e)

βµzHz = −jµx
∂Hx

∂x
− jµy

∂Hy

∂y
(13f)
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Note that (13a)–(13d) is derived from Maxwell’s curl equations (12a)
and (13e), (13f) is derived from Maxwell’s divergence equations (12b).

Ex

Ey

Ez

Hx

Hy

Hz

Ex

Ey

Ez

Hx

Hy

Hz

Figure 1. The compact 2D lattice.

Equation (13) can be discretized by using the compact 2D Yee
cell [16–18] shown in Fig. 1. Two of the resulting update equations are
presented below as an example:

βEx(i, j) = wµy(i, j)Hy(i, j)+
j

∆x

3∑
l=1

a(l) [Ez(i+l, j)−Ez(i−l+1, j)]

(14a)

βEz(i, j) =
j

∆xεz(i, j)

3∑
l=1

a(l)

[εx(i−l, j)Ex(i−l, j)−εx(i+l−1, j)Ex(i+l−1, j)]

+
j

∆yεz(i, j)

3∑
l=1

a(l)

[εy(i, j−l)Ey(i, j−l)−εy(i, j+l−1)Ey(i, j+l−1)] (14b)
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Field update equations can be used to form an eigenvalue problem as:

[A] − β[I] · x = 0 (15)

where [A] is a sparse coefficient matrix, [I] is the unit matrix and x
is the unknown field vector. The eigen solution of [A] delivers the
propagation constant and corresponding electromagnetic fields.

3. NUMERICAL RESULTS

First, a dielectric filled rectangular waveguide with dimensions a =
1.5 cm, b = 0.6 cm and relative dielectric constant εr = 2.25, as
illustrated in Fig. 2(a), is considered. The propagation constants of
the first two higher order modes are computed using the FDFD [16]
and the MRFD methods. Results are compared in Fig. 3(a) to the
analytical calculations [19]. The convergence of the calculated error
with respect to cell size for each method is provided in Fig. 4.

aa

bb

aa

bb

h

(a) (b)

aa

bb
h

(c)

w

y

x

z

Figure 2. Waveguiding structures: (a) dielectric filled waveguide, (b)
partially filled waveguide, (c) microstrip line.

The second example is a partially filled waveguide as shown in
Fig. 2(b). Waveguide dimensions are a = 1.5 cm, b = 0.6 cm and
h = 0.3 cm and the relative dielectric constant of the substrate is
εr = 2.25. Computed results are given in Fig. 3(b).

Finally, the propagation characteristics of a boxed microstrip line
(Fig. 2(c)) are considered. The dimensions are a = 1.5 cm, b = 1.5 cm,
h = 0.3 cm and w = 0.3 cm and εr of the substrate is 30. The computed
effective dielectric constant of this structure is shown in Fig. 5.
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Figure 3. Propagation constant of the first two propagating modes
of a waveguide: (a) dielectric filled, (b) partially filled.

For all three cases, the MRFD grid was chosen to be coarser than
the FDFD grid, yet the accuracy of both methods remained identical.
Coarser grid results smaller matrix sizes, reduced computation time
and memory requirements. The efficiency of the new method is
compared to FDFD in Table 2. Results show that the accuracy of
the MRFD method matches that of FDFD method despite savings in
terms of memory and in execution time. The memory requirements
and execution time of both methods for each example is summarized
Table 2. These calculations are performed by MATLAB codes and run
on a Windows based personal computer with 3 GB memory and two
600-MHZ Pentium III CPUs.
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Table 2. Computer resources consumed by the two methods.

Mesh

size

Matrix

Size

[byte]

Time

[sec]

Uniform FDTD 15 × 6 32336 1.549

Waveguide MRFD 5 × 2 4384 0.268

Partially Filled FDTD 15 × 6 32336 3.001

Waveguide MRFD 5 × 4 11600 0.7433

Microstrip FDTD 15 × 6 32336 1.424

Line MRFD 10 × 4 26620 0.925

Figure 4. Error convergence of the propagation constant.
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Figure 5. Effective dielectric constant of the boxed microstrip line.
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4. CONCLUSION

The multiresolution frequency domain scheme based on the biorthog-
onal CDF wavelet family is developed. The newly developed method
together with traditional FDFD method is used to analyze the propaga-
tion characteristics of general guided wave structures. Results indicate
substantial savings in terms of execution time and memory require-
ments. It is expected that the savings will be more significant in three
dimensional problems.
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