Vol. 66
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-10-17
On the Image Approximation for Electromagnetic Wave Propagation and PEC Scattering in Cylindrical Harmonics
By
, Vol. 66, 65-88, 2006
Abstract
Aclosed-form formula, the discrepancy parameter, which has been defined as the ratio of the modal expansion coefficients between the electromagnetic field obtained from the image approximation and the incident electromagnetic field, has been proposed for the evaluation of the validity of the image approximation in the electromagnetic wave propagation, i.e., Love's equivalence principle, and the electromagnetic wave scattering, i.e., the induction equivalent and the physical equivalent, in the cylindrical geometry. The discrepancy parameter is derived through two equivalent methods, i.e., the vector potential method through the cylindrical addition theorem and the dyadic Green's function method, for both the TE and TM cylindrical harmonics. The discrepancy parameter justifies the fact that the image approximation approaches the exact solution for the cylindrical surface of infinite radius. For the narrow-band field with limited spectral component in k space, the cylindrical modal expansion of the electromagnetic wave into the TE and TM cylindrical harmonics can be separated into the forward-propagating wave that propagates forward and the back-scattered wave that is back-scattered by the PEC surface, within the image approximation. The discrepancy parameter shows that the validity of the image approximation depends on the property of the incident field and the radius of the cylindrical surface, i.e., the narrow-band field and the surface of a large radius are in favor of the image approximation, which has also been confirmed by the numerical result.
Citation
Shaolin Liao, and Ronald Vernon, "On the Image Approximation for Electromagnetic Wave Propagation and PEC Scattering in Cylindrical Harmonics," , Vol. 66, 65-88, 2006.
doi:10.2528/PIER06083002
References

1. Booysen, A. J., "Aperture theory and the equivalence principle," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 29-40, 2003.
doi:10.1109/MAP.2003.1232161

2. Yaghjian, A. D., "Equivalence of surface current and aperture field integrations for reflector antennas," IEEE Trans. on Antennas and Propagat., Vol. 32, No. 12, 1355-1358, 1984.
doi:10.1109/TAP.1984.1143261

3. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.

4. Lin, D.-B. and T.-H. Chu, "Bistatic frequency-swept microwave imaging: principle, methodology and experimental results," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 5, 855-861, 1993.
doi:10.1109/22.234522

5. Tseng, C.-H. and T.-H. Chu, "An effective usage of vector network analyzer for microwave imaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 2884-2891, 2005.
doi:10.1109/TMTT.2005.854251

6. Schlobohm, B., F. Amdt, and J. Kless, "Direct PO optimized dualoffset reflector antennas for small earth stations and for millimeter wave atmospheric sensors," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 6, 1310-1317, 1992.
doi:10.1109/22.141365

7. Galindo-Israel, V., W. A. Imbriale, and R. Mittra, "On the theory of the synthesis of single and dual offset shaped reflector antennas," IEEE Trans. Antennas Propagat., Vol. AP-35, No. 8, 887-896, 1987.
doi:10.1109/TAP.1987.1144200

8. Hestilow, T. J., "Simple formulas for the calculation of the average physical optics RCS of a cylinder and a flat plate over a symmetric window around broadside," IEEE Antennas and Propagation Magazine, Vol. 42, No. 5, 48-52, 2000.
doi:10.1109/74.883507

9. Adachi, S., A. Ohashi, and T. Uno, "Iterative radar target imaging based on modified extended physical optics method," IEEE Trans. on Antennas and Propagat., Vol. 38, No. 6, 847-852, 1990.
doi:10.1109/8.55581

10. Legault, S. R., "Refining physical optics for near-field computations," Electronics Letters, Vol. 40, No. 1, 2004.
doi:10.1049/el:20040001

11. Borkar, S. R. and R. F. H. Yang, "Reflection of electromagnetic waves from oscillating surfaces," IEEE Trans. on Antennas and Propagat., No. 1, 122-127, 1975.
doi:10.1109/TAP.1975.1141013

12. Cramer, P. W. and W. A. Imbriale, "Speed up of near-field physical optics scattering calculations by use of the sampling theorem," IEEE Transactions on Magnetics, Vol. 30, No. 5, 3156-3159, 1994.
doi:10.1109/20.312607

13. Cao, R. and R. J. Vernon, "Improved performance of threemirror beam-shaping systems and application to step-tunable converters," Joint 30th International Conference on Infrared and Millimeter Waves & 13th Internatioal Conference on Terahertz Electronics, 19-23, 2005.

14. Perkins, M. P. and R. J. Vernon, "Iterative design of a cylinderbased beam-shaping mirror pair for use in a gyrotron internal quasi-optical mode converter," 29th International Conference on Infrared and Millimeter Waves, 27 2004.

15. Liao, S. and R. J. Vernon, "Anew fast algorithm for field propagation between arbitrary smooth surfaces," Joint 30th Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, Vol. 2, 606-607, 2005.

16. Liao, S. and R. J. Vernon, "Sub-THz beam-shaping mirror designs for quasi-optical mode converter in high-power gyrotrons," J. Electromagn. Waves and Appl., Vol. scheduled for 21, No. 4, 425-439, 2007.

17. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, 1961.

18. Papa, R. J. and J. F. Lennon, "Conditions for the validity of physical optics in rough surface scattering," IEEE Trans. on Antennas and Propagat., Vol. 36, No. 5, 647-650, 1988.
doi:10.1109/8.192141

19. Tai, C.-T., The Dyadic Green's Function, IEEE Press, 1991.

20. Collin, R. E., Field Theory of Guided Waves, second edition, 1991.

21. Stratton, J. A., Electromagnetic Theory, McGraw-Hall, 1941.

22. Leach, Jr. W. M. and D. T. Paris, "Probe-compensated nearfield measurements on a cylinder," IEEE Trans. on Antennas and Propagat., Vol. 21, No. 7, 435-445, 1973.
doi:10.1109/TAP.1973.1140520

23. Yaghjian, A. D., "An overview of near-field antenna measurements," IEEE Trans. on Antennas and Propagat., Vol. 34, No. 1, 30-45, 1986.
doi:10.1109/TAP.1986.1143727

24. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1965.

25. Li, L.-W., N.-H. Lim, W.-Y. Yin, and J.-A. Kong, "Eigenfunctional expansion of dyadic Green's functions in gyrotropic media using cylindrical vector wave functions," Progress In Electromagnetics Research, Vol. 43, 101-121, 2003.
doi:10.2528/PIER03020201