Vol. 65
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-09-24
An Analytical Investigation of the Radiation Characteristics of Infinitesimal Dipole Antenna Embedded in Partially Reflective Surfaces to Obtain High Directivity
By
, Vol. 65, 137-155, 2006
Abstract
The far-field radiation characteristics of an infinitesimal dipole embedded between two partially reflective surfaces (PRS) to obtain high directivity are studied analytically. The analysis is based on integral summation of spectral radiation fields of the source in cylindrical coordinate, so that we can find the effects of transmission and reflection coefficients of PRS on all components of primary radiation source. The analysis shows that due to the existence of TEz and TMz modes for horizontal dipole source, the effects of PRSs are different for each mode. Also, this study shows that by adjusting the spacing of the plates, it is possible to achieve high directive multibeam patterns.
Citation
Abbas Pirhadi, and Mohammad Hakkak, "An Analytical Investigation of the Radiation Characteristics of Infinitesimal Dipole Antenna Embedded in Partially Reflective Surfaces to Obtain High Directivity," , Vol. 65, 137-155, 2006.
doi:10.2528/PIER06081501
References

1. Thevenot, M., C. Cheype, A. Reineix, and B. Jecko, "Directive photonic bandgap antennas," IEEE, Vol. 47, No. 11, 2115-2122, 1999.

2. Cheype, C., C. Serier, M. Thevenot, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699

3. Maagt, P. D., R. Gonzalo, Y. C. Vardaxoglou, and J. M. Baracco, "Electromagnetic bandgap antennas and components for microwave and (sub) millimeter wave application," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2667-2677, 2003.
doi:10.1109/TAP.2003.817566

4. Chang, C. C., Y. Qian, and T. Itoh, "Analysis and applications of uniplanar compact photonic bandgap structures," Progress In Electromagnetics Research, Vol. 41, 211-235, 2003.
doi:10.2528/PIER02010890

5. Weily, A. R., K. P. Esselle, B. C. Sanders, and T. S. Bird, "High gain 1-D resonator antenna," Microwave and Optical Technology Letters, Vol. 47, No. 2, 107-114, 2005.
doi:10.1002/mop.21095

6. Lee, Y. J. U., J. Yeo, K. D. Ko, R. Mittra, Y. Lee, and W. S. Park, "A novel design technique for control of defect frequencies of an electromagnetic bandgap (EBG) superstrate for dual-band directivity enhancement," Microwave and Optical Technology Letters, Vol. 42, No. 1, 25-31, 2005.
doi:10.1002/mop.20196

7. Lee, Y. J. U., J. Yeo, R. Mittra, Y. Lee, and W. S. Park, "Application of electromagnetic bandgap (EBG) superstrates with controllable defect for a class of patch antennas as spatial angular filters," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 224-235, 2005.
doi:10.1109/TAP.2004.840521

8. Akalin, T., J. Danglot, O. Vanbesien, and Lippens, "A highly directive dipole antenna embedded in a Fabry-Perot type cavity," IEEE Microwave and Wireless Components, Vol. 12, No. 2, 48-50, 2002.
doi:10.1109/7260.982873

9. Wang, S.A. P. Feresidis, G. Goussetis, and J. C. Vardaxoglou, "High-gain subwavelength resonant vavity antennas based on metamaterial ground plane," IEE Proc. on Microwave, Vol. 153, No. 1, 2006.

10. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Transaction on Antennas and Propagation, Vol. 53, No. 1, 209-215, 2005.
doi:10.1109/TAP.2004.840528

11. Boutayeb, H. and T. A. Denidni, "Internally excited FabryCperot type cavity: power normalization and directivity evaluation," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 2006.

12. Boutayeb, H., K. Mahdjoubi, A. C. Tarot, and T. A. Denidi, "Directivity of an antenna embedded inside a Fabry-Perot cavity: analysis and design," Microwave and Optical Technology Letters, Vol. 48, No. 1, 2006.
doi:10.1002/mop.21249

13. Boutayeb, H., K. Mahdjoubi, and A. C. Tarot, "Multi-layer crystal of metallic wires: analysis of the transmission coefficient for outside and inside excitation," Progress In Electromagnetics Research, Vol. 59, 299-324, 2006.
doi:10.2528/PIER05102404

14. Kong, J. A., Electromagnetic Wave Theory, Wiley Interscience, 2000.

15. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101

16. Balanis, C., Antenna Theory Analysis and Design, John Wiely & Sons, 2005.

17. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801