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Abstract—The far-field radiation characteristics of an infinitesimal
dipole embedded between two partially reflective surfaces (PRS) to
obtain high directivity are studied analytically. The analysis is based
on integral summation of spectral radiation fields of the source in
cylindrical coordinate, so that we can find the effects of transmission
and reflection coefficients of PRS on all components of primary
radiation source. The analysis shows that due to the existence of TEz

and TMz modes for horizontal dipole source, the effects of PRSs are
different for each mode. Also, this study shows that by adjusting the
spacing of the plates, it is possible to achieve high directive multibeam
patterns.

1. INTRODUCTION

Two conventional strategies to obtain high directivity in antenna
configurations are using large aperture antennas, such as horn and
reflector antennas, and using arrays of small radiation sources.
However, there are many problems related to these configurations,
such as weight, geometry, construction and feeding network. High
directive resonator antennas, which have been recently introduced to
obtain high directivity from a small radiation sources [1, 3], are new
candidates. Two methods for the design of such structures are;

• Using small radiation source embedded in defected 1-D or 2-D
electromagnetic bandgap structures (EBG) [2–7].
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• Using a Fabry-Perot cavity phenomenon excited by small radiation
source [8–10].

Different methods of analysis of the two mentioned configurations
are introduced. To analyze the first configuration a suitable EBG
structure is excited by a plane wave to determine its bandgap [7] and
then a suitable defect in the structure is exerted to achieve a resonance
frequency in the bandgap region. A small radiation source placed
in the structure would then yield highly directive radiation pattern
at the resonance frequency. In this method the EBG structure is
analyzed separately and after describing its characteristics, it is used
to analyze the radiation of the source. In the second configuration, also
its behavior when excited by a plane wave from their inside and outside
is perused, but instead of EBG structure the small radiation source is
embedded between two PRS or mirrors. In addition to this method, to
achieve more accurate characteristics of structure the method based on
transmission line model is used in [11–13]. In all of these methods the
authors don’t consider the direct effects of PRS on the electromagnetic
field components of primary small radiation source. In this paper
to study the effects of PRS on the electromagnetic radiation fields
of arbitrary source, we examine the effects of such structure on the
far field characteristics of a point source that is embedded in it. By
spectral representation of radiation fields that is suitable for analyzing
of multi-layer media and using far field approximation of Maxwell
equations we can provide general formulation to extract the far field
radiation characteristics of arbitrary source embedded in the structure.

2. SPECTRAL REPRESENTATION OF
ELECTROMAGNETIC RADIATION FIELDS OF AN
INFINITESIMAL DIPOLE

A suitable method to analyze layered media is the spectral
representation of electromagnetic fields. By using the Sommerfeld
identity the spherical radiated field by the source can be transformed
into an integral summation of plane waves in cylindrical coordinate.
Therefore, it is possible to impose the reflection and transmission
effects of the plates and layers on the radiation fields [14].

2.1. Longitudinal Field Components of an Infinitesimal
Dipole in Free Space

The spectral representation of transverse field components are derived
from the spectral representation of longitudinal field components Ẽz

and H̃z [14].
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where k2
ρ = k2 − k2

0z. Therefore, at first it is necessary to obtain
the spectral representation of longitudinal field components. Using
the Dyadic Green’s Function approach, the electromagnetic fields of
infinitesimal electric dipole are given by [15]
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¯̄I +
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k2

)
.α̂ Il
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4πr
and H(r) = ∇× α̂ Il

ejkr

4πr
(3)

where Il is the current moment, α̂ is its direction and k=ω
√
εµ. From

(3) the electric and magnetic z components of different infinitesimal
electric dipoles are shown in Table 1.

Table 1. Longitudinal field components of infinitesimal electric dipole.
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Using the Sommerfeld identity
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(1)
0 (kρρ) ejk0z |z| (4)

with the results of Table 1, we can find integral representations of
longitudinal components, shown in Table 2. Also the electromagnetic
fields versus their spectral forms are represented as

E(r) =

+∞∫
−∞

dkρ Ẽ(kρ, r) and H(r) =

+∞∫
−∞

dkρ H̃(kρ, r) (5)

where Ẽ and H̃ are spectral representation of E and H. Comparing
results of Table 2 and (5), we conclude that the spectral representations
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Table 2. Integral representation of the longitudinal field components
of infinitesimal electric dipole.

Longitudinal Components

z-directed electric dipole
Ez = − Il

8πωε0

+∞∫
−∞

dkρ
k3

ρ

k0z
H1

1 (kρρ) ejk0z |z|

Hz = 0

x-directed electric dipole

Ez = ±j Il
8πωε0

cos(φ)

+∞∫
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dkρ k2
ρ H1

1 (kρρ) ejk0z |z|

Hz = j Il
8π

sin(φ)

+∞∫
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dkρ
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ρ

k0z
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1 (kρρ) ejk0z|z|

y-directed electric dipole

Ez = ±j Il
8πωε0

sin(φ)

+∞∫
−∞

dkρ k2
ρ H1

1 (kρρ) ejk0z|z|

Hz = −j Il
8π

cos(φ)

+∞∫
−∞

dkρ
k2

ρ

k0z
H1

1 (kρρ) ejk0z |z|

of longitudinal field components equal to integrands of integrals
of Table 2. Also, from duality theorem the electromagnetic field
components of magnetic dipole can be obtained by the replacement
Ē → H̄, H̄ → −Ē and µ ↔ ε. By having the spectral forms of
longitudinal components (Table 2) and (1) we can find the spectral
representation of transverse components of the dipole fields.

3. RADIATION FROM INFINITESIMAL DIPOLE
ANTENNA EMBEDDED IN PARTIALLY REFLECTIVE
SURFACE

Configuration of the problem is shown in Figure 1. The primary
radiation source can be vertical/horizontal infinitesimal electric or
magnetic dipole. The two layers that the infinitesimal dipole
is embedded between them are partially reflective surfaces with
transmission and reflection coefficients t and r, respectively. Our
purpose is to derive the far field radiation characteristics of the dipole
in the presence of these surfaces.

Using an integral representation of the fields, the field components
in each region of Figure 1 are represented as superposition of integral
summations of incoming and outgoing plane waves. By invoking
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Figure 1. High directive resonance antenna structure.

the boundary conditions at the PRS locations, the amplitudes of
these plane waves can be calculated. Without loss of generality, the
following formulations are given for the x-directed infinitesimal electric
dipole. We denote the region between plates as Region 0, and the
region outside the plates as Region 1. From the results of Table 2
and equations (1, 2), the fields in both regions may be expressed as
follows [16], where m denotes 0 or 1:

Ez=cos(φ)
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1
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In the above formulas Exed=jIlk2
ρ/8πωεm and Hexd=jIlk2

ρ/8πkmz.
It is seen that each transverse component includes two terms
from longitudinal components Ez and Hz as TEz and TMz waves,
respectively. Considering boundary condition due to reflection and
transmission of PRS for horizontal and vertical (TMz and TEz)
components, we have

rTM =
E

||
r

E
||
i

=
−E−

0 e−jk0zd

E+
0 ejk0zd + Exedejk0zd

Z = d,m = 0 (8a)
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||
r

E
||
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=
E+
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Z = −d,m = 0 (8b)

From (8a, 8b), we find

E+
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1 − rTMej2dk0z
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For Region 1 only the outgoing wave remains, therefore

tTM =
E

‖
t

E
‖
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1 ejk0zd
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z = d, m = 1 (10a)
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From (10a, 10b)
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Exed; Z > d (11a)
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1 =
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Using similar procedure, for TE waves we have
For Region 0

H+
0 =

rTEej2dk0z

1 − rTEej2dk0z
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and for Region 1
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1 − rTEej2dk0z
Hxed; Z > d (13a)

H−
1 =

tTE

1 − rTEej2dk0z
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3.1. Far Field of Longitudinal Field Components

To find the representation of the radiation fields it is necessary to
study the fields only in z > d and z < −d regions. Therefore, using
the results of (11) and (13) for z > d the longitudinal components of
electromagnetic fields (6a, 7a) become

Ez = cos(φ)

+∞∫
−∞

dkρ ExedH
1
1 (kρρ)

1 + rTM

1 − rTMej2dk0z
ejk0zz (14)

Hz = sin(φ)

+∞∫
−∞

dkρHxedH
1
1 (kρρ)

1 + rTE

1 − rTEej2dk0z
ejk0zz (15)
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It is more expedient to expand (11a) and (13a) by geometrical
series and evaluate the integrals (14) and (15) term by term.

Ez =cos(φ)
+∞∑
n=0




+∞∫
−∞

dkρExedH
1
1 (kρρ)(1+rTM )(rTM )nejk0z(z+2nd)


 (16)

Hz =sin(φ)
+∞∑
n=0




+∞∫
−∞

dkρHxedH
1
1 (kρρ)(1+rTE)(rTE)nejk0z(z+2nd)


 (17)

In the following, for a specific frequency and any incident angle of
plane waves to PRS we assume that rTE and rTM are constant. This
assumption can be obtained by a suitable design of frequency selective
surface (FSS) for PRS. Equations (16) and (17) would then simplify
to

Ez =cos(φ)
+∞∑
n=0


(1+rTM )(rTM )n

+∞∫
−∞

dkρExedH
1
1 (kρρ) ejk0z(z+2nd)


 (18)

Hz =sin(φ)
+∞∑
n=0


(1+rTE)(rTE)n

+∞∫
−∞

dkρHxedH
1
1 (kρρ)ejk0z(z+2nd)


 (19)

Because of the similarity of integral parts of Ez and Hz in (18) and
(19) to Ez and Hz of the x-directed infinitesimal electric dipole located
at z = −2nd in free space, their far-field forms are equal, too. From (3)
the longitudinal far-field components of x-directed infinitesimal electric
dipole, are given by

Ez(r, θ, φ) =
−jωµ Il

4π
[sin(θ) cos(θ) cos(φ)]

ejkr

r
e−jkr̂.�r′ (20)

Hz(r, θ, φ) =
−jk Il

4π
[sin(θ) sin(φ)]

ejkr

r
e−jkr̂.�r′ (21)

Therefore, the far field representation of each term of (18) and (19)
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becomes

Ez(r, θ, φ) =
−jωµ Il

4π
(1 + rTM )(rTM )n

[sin(θ) cos(θ) cos(φ)]
ejkr

r
ej2ndk cos(θ) (22)

Hz(r, θ, φ) =
−jk Il

4π
(1 + rTE)(rTE)n

[sin(θ) sin(φ)]
ejkr

r
ej2ndk cos(θ) (23)

3.2. Far Field of Transverse Field Components

Letting ∇ = ∇s + ẑ ∂
∂z where the subscript s indicates transverse to

the z-direction, Maxwell’s equations become(
∇s + ẑ

∂

∂z
) × (Es + ẑEz

)
= jωµ(Hs + ẑHz) (24)(

∇s + ẑ
∂

∂z
) × (Hs + ẑHz

)
= −jωε(Es + ẑEz) (25)

After classification the longitudinal and transverse components in (20)
and (21) and some simplification we have(

k2 +
∂2

∂z2

)
ES = ∇s(

∂

∂z
Ez) − jωµ ẑ ×∇Hz (26)(

k2 +
∂2

∂z2

)
HS = ∇s(

∂

∂z
Hz) + jωε ẑ ×∇Ez (27)

The general far field form of the field components in (26) and (27)
is F (r, θ, φ) = f(θ, φ) ejkr

r . Normally, in the far field expressions, the
terms 1

rn ; n = 2, 3, . . . are ignored [16]. Using these assumptions the
derivative terms in (26) and (27) are replaced by (See Appendix A):

∂2

∂x∂z
(•) = −k2 sin(θ) cos(θ) cos(φ)(•) (28)

∂2

∂y∂z
(•) = −k2 sin(θ) cos(θ) sin(φ)(•) (29)

∂2

∂z2
(•) = −k2 cos2(θ)(•) (30)

∂

∂x
(•) = jk sin(θ) cos(φ)(•) (31)
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∂

∂y
(•) = jk sin(θ) sin(φ)(•) (32)

Therefore, using (28)–(32) with (26) and (27) the transverse field
components become

Ex = −cos(θ) cos(φ)
sin(θ)

Ez −
ωµ

k

sin(φ)
sin(θ)

Hz (33)

Ey = −cos(θ) sin(φ)
sin(θ)

Ez +
ωµ

k

cos(φ)
sin(θ)

Hz (34)

Hx = −cos(θ) cos(φ)
sin(θ)

Hz +
ωε

k

sin(φ)
sin(θ)

Ez (35)

Hy = −cos(θ) sin(φ)
sin(θ)

Hz −
ωε

k

cos(φ)
sin(θ)

Ez (36)

Also, the far-field spherical components of the radiation fields can be
written as

Er = 0 (37)

Eθ =
Ez

sin(θ)
(38)

Eφ =
ωµ

k

Hz

sin(θ)
(39)

Hr = 0 (40)

Hθ = − Hz

sin(θ)
(41)

Hφ = −ωε

k

Ez

sin(θ)
(42)

Now, using Ez and Hz from (22, 23) in (37–42) we obtain

Er = 0 (43)

Eθ =
jωµ Il

4π
[
(1 + rTM )(rTM )n cos(θ) cos(φ)

] ejkr

r
ej2ndk cos(θ) (44)

Eφ =
jωµ Il

4π
[
(1 + rTE)(rTE)n[− sin(φ)

] ejkr

r
ej2ndk cos(θ) (45)

Hr = 0 (46)

Hθ =
jkIl

4π
[
(1 + rTE)(rTE)n sin(φ)

] ejkr

r
ej2ndk cos(θ) (47)

Hφ =
jkIl

4π
[
(1 + rTM )(rTM )n cos(θ) cos(φ)

] ejkr

r
ej2ndk cos(θ) (48)



Progress In Electromagnetics Research, PIER 65, 2006 147

Finally, the total radiation fields of the structure from all summation
terms become

Etotal
r = 0 (49)

Etotal
θ =

jωµ Il

4π
1 + rTM

1 − rTMej2dk cos(θ)
cos(θ) cos(φ)

ejkr

r
(50)

Etotal
φ =

jωµ Il

4π
1 + rTE

1 − rTEej2dk cos(θ)
[− sin(φ)]

ejkr

r
(51)

Htotal
r = 0 (52)

Htotal
θ =

jk Il

4π
1 + rTE

1 − rTEej2dk cos(θ)
sin(φ)

ejkr

r
(53)

Htotal
φ =

jk Il

4π
1 + rTM

1 − rTMej2dk cos(θ)
cos(θ) cos(φ)

ejkr

r
(54)

4. DIRECTIVITY OF THE STRUCTURE

Using (49)–(54) the Pointing vector becomes

%S = ωµk(
Il

4π r
)2

[
A(θ) sin2(φ) + B(θ) cos2(φ) cos2(θ)

]
r̂ = Srr̂ (55)

where

A(θ)=

∣∣1 + rTE
∣∣2∣∣1 − rTEej2dk cos(θ)

∣∣2 and B(θ)=

∣∣1 + rTM
∣∣2∣∣ 1 − rTMej2dk cos(θ)

∣∣2 (56)

The radiation intensity of the structure for upper half space will be:

Uav =
Prad

4π
=

©
∫∫

S

1
2
r2Re(%S). %ds

4π
(57)

which after some simplification yields

Uav =
ωµk

8
(
Il

4π
)2

∫ π/2

0

[
A(θ) + B(θ) cos2(θ)

]
sin(θ)dθ (58)

Because of the symmetrical property of the structure, (58) must be
multiplied by 2 for the whole space. Therefore, the directivity of the
structure becomes

D(θ, φ) = 4
A(θ) sin2(φ) + B(θ) cos2(φ) cos2(θ)∫ π/2

0

[
A(θ) + B(θ) cos2(θ)

]
sin(θ)dθ

(59)
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Figure 2. A and B amplitudes versus d/λ for θ = 0, rTE = rTM =
.99ej∠−172◦ .

Also, the radiation resistance may be written as

Rr =
2Prad

|I|2
= η

π

2

(
l

λ

)2 ∫ π/2

0

[
A(θ) + B(θ) cos2(θ)

]
sin(θ)dθ (60)

To compare, the x-directed electric dipole in free space has a radiation
resistance of

Rr =
2Prad

|I|2
= η

π

2

(
l

λ

)2

× 4
3

(61)

Because of the integral term of (60), the radiation resistance and
consequently input resistance of antenna depend on the characteristics
of PRS and their spacing. Therefore, we have additional parameters to
adjust the input resistance of structure. This matter has already been
studied for a structure excited by probe fed-microstrip antenna [17].
Compared to the x-directed infinitesimal electric dipole in free space,
the two parameters A and B are included in the directivity of
the structure from TEz and TMz components, respectively. These
parameters depend on the reflection coefficients of PRS, spacing and
the incident angle on them. As shown in Figures 2, 3 the necessary
condition to achieve high directivity is near complete reflection
coefficient in resonant frequency. This reflectivity is necessary for
both polarizations of the incident plane waves (TEz and TMz ) and
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Figure 3. A and B amplitudes versus θ for d = λ/4, rTE = rTM =
.99ej∠−172◦ .

can be achieved by dielectric plates with very high permittivity which
is commercially not easy obtain, multi layer dielectric plates as 1-D
EBG which leads to thick PRS layer, and frequency selective surface
as 2-D EBG. The PRSs that are designed with dielectric plates are
polarization sensitive, especially for oblique incident angles. Therefore,
the FSS structures are the best choice for the design of the required
PRS [3,9,10,17]. In the following we assume that for a special frequency
and any incident angle, the reflection coefficients for both TEz and
TMz modes are equal. To study the effects of A and B factors,
their variations are depicted versus (d/λ) in Figure 2 for normal
incidence angle. As shown, there are resonance frequencies at which
the amplitudes of A and B are maximum.

The resonance frequencies take place at d = mλ/4, (m =
1, 3, 5 . . . ). At the first resonance (d = λ/4), the A and B factors
are examined versus incident angle θ in Figure 3.

At other resonance frequencies, we can obtain more resonance
incident angles. This phenomenon leads to multiple beam radiation
patterns, which are not desirable in broadside applications. This
situation is shown in Figure 4 for d = 3λ/4.

In this case, we have two lobes in broadside and θ = 70◦ directions.
Figures 5 and 6 show the directivity of the structure for φ = 0, π

4 ,
π
2

planes and d = λ/4, 3λ/4, respectively.
As observed, increasing the distance between PRS leads to multi-
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Figure 4. A and B amplitudes versus θ for d = 3λ/4, rTE= rTM =
.99ej∠−172◦ .

Figure 5. Directivity of structure versus θ for d = λ/4 and φ = 0, π
2

and π
4 planes.

beam radiation from the structure. Also, at resonance frequencies
the radiation resistance of the structure is more than the radiation
resistance of the infinitesimal dipole in free space (Figure 8).
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Figure 6. Directivity of structure versus θ for d = 3λ/4 and φ = 0, π
2

and π
4 planes.

(c)

(a) (b)

Figure 7. Radiation pattern of structure for upper half space and
rTE =rTM = .9ej∠−154.15◦ , (a) d≈λ/4, (b) d≈3λ/4 and (c) d≈5λ/4.
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Figure 8. Radiation resistance of structure embedded between two
PRS for d = 3λ/4, rTE=rTM= .99ej∠−172◦ .

5. CONCLUSION

In this paper the far field radiation pattern of an infinitesimal dipole
antenna as a prime source embedded between two PRS has been
studied. This analytical study shows how a proper choice of the
PRS reflectivity and spacing lead to directivity enhancement of the
infinitesimal dipole. Also, the analytical results make it possible to
study the effects of PRS on the radiation of different types of primary
sources such as wire and aperture antennas.

APPENDIX A.

The general form of the far field approximation is F (r, θ, φ) =
f(θ, φ) ejkr

r . The derivations of r, θ and φ are given by Hence, the
derivations of F with respective to x, y and z, using the chain rule,
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r θ φ

∂

∂x
sin θ cosφ

cos θ cosφ
r

− sin(φ)
r sin(θ)

∂

∂y
sin θ sinφ

cos θ sinφ

r

cos(φ)
r sin(θ)

∂

∂z
cos(θ) −sin(θ)

r
0

become

∂F

∂x
= sin(θ) cos(φ)

∂f

∂r
+

cos(θ) cos(φ)
r

∂f

∂θ
− sin(φ)

r sin(θ)
∂f

∂φ
(A1)

∂F

∂y
= sin(θ) sin(φ)

∂f

∂r
+

cos(θ) sin(φ)
r

∂f

∂θ
+

cos(φ)
r sin(θ)

∂f

∂φ
(A2)

∂F

∂z
= cos(θ)

∂f

∂r
− sin(θ)

r

∂f

∂θ
(A3)

The derivations of (A1), (A2), and (A3) with respect to z are

∂2F

∂z∂x
= sin(θ) cos(θ) cos(φ)

∂2f

∂r2
− sin2(θ) cos(φ)

∂

∂r
(
1
r

∂f

∂θ
)

+
cos(θ) cos(φ)

r

∂

∂θ
(cos(θ)

∂f

∂r
) − cos(θ) cos(φ)

r2

∂

∂θ
(sin(θ)

∂f

∂θ
)

−cos(θ) sin(φ)
r sin(θ)

∂2f

∂r∂φ
+

sin(φ)
r2

∂2F

∂θ∂φ
(A4)

∂2F

∂z∂y
= sin(θ) cos(θ) sin(φ)

∂2f

∂r2
− sin2(θ) sin(φ)

∂

∂r
(
1
r

∂f

∂θ
)

+
cos(θ) sin(φ)

r

∂

∂θ
(cos(θ)

∂f

∂r
) − cos(θ) sin(φ)

r2

∂

∂θ
(sin(θ)

∂f

∂θ
)

+
cos(θ) cos(φ)

r sin(θ)
∂2f

∂r∂φ
− cos(φ)

r2

∂2F

∂θ∂φ
(A5)

∂2F

∂z2
= cos2(θ)

∂2f

∂r2
+

sin2(θ)
r

∂f

∂r
− 2 sin(θ) cos(θ)

r

∂f

∂r∂θ

+
2 sin(θ) cos(θ)

r2

∂f

∂θ
+

sin2(θ)
r

∂2f

∂θ2
(A6)
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For the far field approximation, the terms 1
rn n = 2, 3, . . . are

neglected, therefore the expressions (A1) to (A6) become

∂2

∂x∂z
(•) = −k2 sin(θ) cos(θ) cos(φ)(•) (A7)

∂2

∂y∂z
(•) = −k2 sin(θ) cos(θ) sin(φ)(•) (A8)

∂2

∂z2
(•) = −k2 cos2(θ)(•) (A9)

∂

∂x
(•) = jk sin(θ) cos(φ)(•) (A10)

∂

∂y
(•) = jk sin(θ) sin(φ)(•) (A11)
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type cavity: power normalization and directivity evaluation,”
IEEE Antennas and Wireless Propagation Letters, Vol. 5, 2006.

12. Boutayeb, H., K. Mahdjoubi, A. C. Tarot, and T. A. Denidi,
“Directivity of an antenna embedded inside a Fabry-Perot cavity:
analysis and design,” Microwave and Optical Technology Letters,
Vol. 48, No. 1, January 2006.

13. Boutayeb, H., K. Mahdjoubi, and A. C. Tarot, “Multi-layer
crystal of metallic wires: analysis of the transmission coefficient
for outside and inside excitation,” Progress In Electromagnetics
Research, PIER 59, 299–324, 2006.

14. Kong, J. A., Electromagnetic Wave Theory, Wiley Interscience,
New York, 1990, EMW Publishing, Cambridge, 2000.

15. Kong, J. A., “Electromagnetic wave interaction with stratified
negative isotropic media,” Progress In Electromagnetics Research,
PIER 35, 1–52, 2002.

16. Balanis, C., Antenna Theory Analysis and Design, John Wiely &
Sons, New Jersey, 2005.

17. Pirhadi, A., M. Hakkak, and F. Keshmiri, “Using electromagnetic
bandgap superstrate to enhance the bandwidth of probe-fed
microstrip antenna,” Progress In Electromagnetics Research,
PIER 61, 215–230, 2006.


