Vol. 64
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-08-28
Diversity Techniques with Parallel Dipole Antennas: Radiation Pattern Analysis
By
, Vol. 64, 23-42, 2006
Abstract
Two parallel dipoles are assessed for antenna diversity. The three-dimensional radiation pattern is considered for signals correlation coefficient. The pattern analysis reveals that, depending on dipole spacing, three types of diversity techniques are generated: space, amplitude-pattern and phase-pattern diversity. The weighting of each technique in signals correlation coefficient mitigation is investigated. The results show that for closely spaced dipoles, the generated phasepattern diversity is the most dominant factor which greatly reduces the signals correlation coefficient. The diversity configuration is measured in a rich scattering environment. Results include signals correlation coefficient, diversity gain for selection combining and maximum ratio combining, effective diversity gain and antenna radiation efficiency can be demonstrated. We show that in rich multipath channel the minimum spatial distance, for effective diversity gain performance, is reduced from 0.5λ for uncoupled dipoles to 0.15λ for coupled dipoles.
Citation
Ali Khaleghi, "Diversity Techniques with Parallel Dipole Antennas: Radiation Pattern Analysis," , Vol. 64, 23-42, 2006.
doi:10.2528/PIER06062401
References

1. Parson, J. D., The Mobile Radio Propagation Channel, second edition, 2000.

2. Vaughan, R., "Spaced directive antennas for mobile communications by the Fourier transform method," IEEE Trans. on Antennas and Propagat., Vol. 48, No. 7, 1025-1032, 2000.
doi:10.1109/8.876319

3. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, 1997.

4. Khaleghi, A.A. Azoulay, and J. C. Bolomey, "Diversity techniques with dipole antennas in indoor multipath propagation," 16th Annual IEEE International Symposium on Personal Indoor and Mobile Radio Communication (PIMRC), No. 9, 2005.

5. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Trans. on Vehicular Technology, Vol. 36, No. 4, 149-172, 1987.

6. Hui, H. T., W. T. O. Yong, and K. B. Toh, "Signal correlation between two normal-mode helical antennas for diversity reception in a multipath environment," IEEE Trans. Antennas and Propagat., Vol. 52, No. 2, 572-577, 2004.
doi:10.1109/TAP.2004.823950

7. Brown, T. W. C.S. R. Saunders, and B. G. Evans, "Analysis of mobile terminal diversity antennas," IEE Proceedings, Vol. 152, No. 2, 2005.

8. Wallace, J. W. and M. A. Jensen, "Termination-dependent diversity performance of coupled antennas: network theory analysis," IEEE Trans. Antennas and Propagat., Vol. 52, 98-105.
doi:10.1109/TAP.2003.822444

9. Boyle, K., "Radiation patterns and correlation of closely spaced linear antennas," IEEE Trans. Antennas Propagat., Vol. 50, No. 8, 1162-1165, 2002.
doi:10.1109/TAP.2002.801367

10. Jensen, M. A. and Y. Rahmat-Samii, "Performance analysis of antennas for hand-held transceivers using FDTD," IEEE Trans. Antennas Propagat. Vol. 42, Vol. '' IEEE Trans. Antennas Propagat. 42, No. 8, 1106-1113, 1994.
doi:10.1109/8.310002

11. Leifer, M. C., "Signal correlations in coupled cell and MIMO antennas," Proc. IEEE Antennas and Propagat. Society Int. Symp., Vol. 3, No. 6, 194-197, 2002.

12. Svantesson, T. and A. Ranheim, "Mutual coupling effects on the capacity of multi-element antenna systems," Proc. IEEE ICASSP'2001, Vol. 4, No. 5, 2485-2488, 2001.

13. Kildal, P.-S. and K. Rosengren, "Electromagnetic analysis of effective and apparent diversity gain of two parallel dipoles," IEEE Antennas and Wireless Propagat. Letters, Vol. 2, No. 4, 2003.

14. Rosengren, K. and P.-S. Kildal, "Radiation efficiency, correlation, diversity gain, and capacity of a six monopole antenna array for a MIMO system: Theory, simulation and measurement in reverberation chamber," Proceedings IEE, Vol. 152, No. 1, 7-16, 2005.

15. Rosengren, K. and P.-S. Kildal, "Study of distribution of modes and plane waves in reverberation chamber for characterization of antennas in multipath environment," Microwave and Optical Technology Letters, Vol. 30, No. 20, 386-391, 2001.
doi:10.1002/mop.1323

16. Khaleghi, A.J. C. Bolomey, and A. Azoulay, "On the statistics of the reverberation chambers and application for wireless antenna test," IEEE symposium on the Antennas and Propagation (AP-S), No. 7, 2006.

17. Taga, T., "Analysis for mean effective gain of mobile antenna in land mobile radio environments," IEEE Trans. on Vehicular Technology, Vol. 39, No. 2, 117-131, 1990.
doi:10.1109/25.54228

18. Douglas, M. G., M. Okoniewski, and M. A. Stuchly, "A planar diversity antenna for handheld PCS devices," IEEE Trans. on Vehicular Technology, Vol. 47, No. 3, 747-754, 1998.
doi:10.1109/25.704830

19. Glazunov, A., "Theoretical analysis of mean effective gain of mobile terminal antennas in Ricean channels," 56th IEEE Conference on VTC, Vol. 3, 1796-1800, 2002.

20. Clarke, R. H., "A statistical theory of mobile radio reception," Bell Syst. Tech. J., Vol. 47, 957-1000, 1969.

21. Scott, N. L., M. O. Leonard-Taylor, and R. G. Vaughan, "Diversity gain from a single-port adaptive antenna using switched parasitic elements illustrated with a wire and monopole prototype," IEEE Trans. Antennas and Propagat., Vol. 47, No. 6, 1066-1070, 1999.
doi:10.1109/8.777133

22. Mattheijssen, P., M. H. A. J. Herben, G. Dolmans, and L. Leyten, "Antenna-pattern diversity versus space diversity for use at handhelds," IEEE Trans.s on Vehicular Technology, Vol. 53, No. 7, 1035-1042, 2004.
doi:10.1109/TVT.2004.830156

23. Khaleghi, A.J. C. Bolomey, and A. Azoulay, "A pattern diversity antenna with parasitic switching elements for wireless LAN communications," 2nd IEEE International Symposium on Wireless Communication Systems 2005 (ISWCS2005), 2005.

24. Clarke, R. H., "A statistical theory of mobile-radio reception," Bell Syst. Tech. J., No. 7, 957-1000, 1968.

25. Jakes, W. C., Microwave Mobile Communications, IEEE Press, 1994.

26. Kouveliotis, N. K., P. T. Trakadas, and C. N. Capsalis, "FDTD modelling of a vibrating intrinsic reverberation chamber," Journal of Electromagnetic Waves and Applications, Vol. 17, 849-850, 2003.
doi:10.1163/156939303322503394

27. Musso, L., F. Canavero, B. Demoulin, and V. Berat, A Plane Wave Monte-Carlo Simulation Method for Reverberation Chamber, EMC Europe, 2002.