Vol. 63
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-07-29
Simulation, Analysis, Design and Applications of Array Defected Microstrip Structure (ADMS) Filters Using Rigorously Coupled Multi-Strip (RCMS) Method
By
Progress In Electromagnetics Research, Vol. 63, 193-207, 2006
Abstract
This paper presents a simple method to analyze and design a desired frequency band rejection in microstrip transmission lines with defected signal strip structure. Also some new structures called ADMS have been introduced and compared. The proposed circuits can be applied to various microwave and millimeter wave components. Finally this paper introduces the RCMS method, a very fast and efficient solution that determines current distribution on the cross section of the signal strip with arbitrary defection pattern. One microstrip line with defected patterns is discussed and then modeled using RCMS method. The results of the current and voltage distribution along an ADMS obtained using RCMS method are in good agreement with those obtained using FEKO (a full wave simulator).
Citation
M. Kazerooni, and Ahmad Cheldavi, "Simulation, Analysis, Design and Applications of Array Defected Microstrip Structure (ADMS) Filters Using Rigorously Coupled Multi-Strip (RCMS) Method," Progress In Electromagnetics Research, Vol. 63, 193-207, 2006.
doi:10.2528/PIER06052803
References

1. Rahman, M. and M. A. Stuchly, "Transmission line—periodic circuit representation of planar microwave photonic bandgap structures," Microw. Opt. Technol. Lett., Vol. 30, No. 7, 15-19, 2001.
doi:10.1002/mop.1207

2. Radisic, V., Y. Qian, and T. Itoh, "Broadband power amplifier using dielectric photonic bandgap structure," IEEE Microwave Guide Wave Lett., Vol. 8, No. 1, 13-14, 1998.
doi:10.1109/75.650973

3. Kesler, M. P., J. G. Maloney, and B. L. Shirley, "Antenna design with the use of photonic bandgap material as all dielectric planar reflectors," Microw. Opt. Tech. Lett., Vol. 11, No. 4, 169-174, 1996.
doi:10.1002/(SICI)1098-2760(199603)11:4<169::AID-MOP1>3.0.CO;2-I

4. Radisic, V., Y. Qian, R. Coccioli, and T. Itoh, "Novel 2- D photonic band gap structure for microstrip lines," IEEE Microwave Guided Wave Lett., Vol. 8, No. 2, 69-71, 1998.
doi:10.1109/75.658644

5. Qian, Y.V. Radisic, and T. Itoh, "Simulation and experiment of photonic band gap structures for microstrip circuits," Proc. APMC'97, No. 12, 585-588, 1997.

6. Maystre, D., "Electromagnetic study of photonic band gaps," Pure Appl. Opt., Vol. 3, No. 6, 975-993, 1994.
doi:10.1088/0963-9659/3/6/005

7. Park, J. L.C. S. Kim, J. Kim, J. S. Park, Y. Qian, D. Ahn, and T. Itoh, "Modeling of a photonic bandgap and its application for the low-pass filter design," Proc. APMC'99, No. 12, 331-334, 1999.

8. Qian, Y. and T. Itoh, "Planar periodic structures for microwave and millimeter wave circuit applications," IEEE MTT-s Dig., No. 6, 1533-1536, 1999.

9. Yang, F. R., Y. Qian, and T. Itoh, "A novel uniplanar compact PBG structure for filter and mixer applications," IEEE MTT-s Dig., No. 6, 919-922, 1999.

10. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterization of an electromagnetic band-gap (EBG) surface," Proc. IEEE AP-S Dig., Vol. 3, No. 6, 744-747, 2002.

11. Yang, F. and Y. Rahmat-Samii, "Mutual coupling reduction of microstrip antennas using electromagnetic band-gap structure," IEEE Antennas Propagat. Soc. Dig., Vol. 2, 478-481, 2001.

12. Fan, M., R. Hu, Z. H. Feng, X. X. Zhang, and Q. Hao, "Advance in 2D-EBG structures' research," J. Infrared Millimeter Waves, Vol. 22, No. 2, 2003.

13. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap structures: a low mutual coupling design for array applications," IEEE Trans. Antennas and Propagation., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

14. Kim, C. S., J. S. Lim, J. S. Park, D. Ahn, and S. W. Nam, "A 10 dB branch line coupler using defected ground structure," European Microwave Conference Digest, 68-71, 2000.

15. Yun, J. S., G. Y. Kim, J. S. Park, D. Ahn, K. Y. Kang, and J. B. Lim, "A design of the novel coupled line bandpass filter using defected ground structure," IEEE MTT-S Digest, 327-330, 2000.

16. Lim, J. S., H. S. Kim, J. S. Park, D. Ahn, and S. W. Nam, "A power amplifier with efficiency improved using defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 4, 170-172, 2001.
doi:10.1109/7260.916333

17. Ahn, D., J. S. Park, C. S. Kim, J. Kun, Y. Qian, and T. Itoh, "A design of the low pass filter using the novel microstrip defected ground structure," IEEE Trans. on MTTs., Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965

18. Yun, J. S., G. Y. Kim, J. S. Park, D. Ahn, K. Y. Kang, and J. B. Lim, "A design of the novel coupled line band pass filter using defected ground structure," IEEE MTTS, Vol. 1, No. 6, 327-330, 2000.

19. Lim, J. S., H. S. Kim, J. S. Park, D. Ahn, and S. Nam, "A power amplifier with efficiency improved using defected ground structure," IEEE Microwave and Wireless Components Lett., Vol. 11, 170-172, 2001.
doi:10.1109/7260.916333

20. Collin, R. E., Foundations of Microwave Engineering, McGraw- Hill, 1996.

21. Pozar, D. M., Microwave Engineering, Addison Wesley, 1990.

22. Laroussi, R. and G. I. Costache, "Finite-element method applied to EMC problems [PCB environment]," IEEE Trans. Electromagnetic Compatibility, No. 5, 178-184, 1993.
doi:10.1109/15.229423

23. Dhaene, T., L. Martens, and D. De Zutter, "Transient simulation of arbitrary non uniform interconnection structures characterized by scattering parameters," IEEE Trans. Circuits Systems-I: Fundamental Theory and Appl., No. 11, 928-937, 1992.
doi:10.1109/81.199890

24. Homentcovschi, D. and R. Oprea, "Analytically determined Quasi-Static parameters of shielded or open multi-conductor microstrip lines," IEEE Trans. Microwave Theory Tech., No. 1, 18-24, 1998.
doi:10.1109/22.654918

25. Gupta, K. C. and C. Kuldip, Microstrip Lines and Slot Lines, 2nd ed., 1996.

26. Cheldavi, A. and M. K. Amirhosseini, "A new two dimensional analysis of microstrip lines using rigorously coupled multi conductor strips model," J. of Electromagn. Waves and Appl., Vol. 18, No. 6, 809-825, 2004.
doi:10.1163/156939304323105880

27. Paul, C. R., Analysis of Multi Conductor Transmission Lines, John Wiley and Sons Inc., 1994.

28. Lei, G. T., G. W. Pan, and B. K. Gilbert, "Examination, clarification, and simplification of modal decoupling method for multi conductor transmission lines," IEEE Trans. Microwave Theory and Tech., Vol. 43, No. 9, 2090-2099, 1995.
doi:10.1109/22.414545