Vol. 60
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-02-21
Optimization Approach to the Retrieval of the Constitutive Parameters of Slab of General Bianisotropic Medium
By
Progress In Electromagnetics Research, Vol. 60, 1-18, 2006
Abstract
The reconstruction of the frequency-dispersive constitutive parameters of general bianisotropic media is achieved by an optimization approach. The constitutive parameters are optimized in order to match the measured reflection and transmission data for plane wave incidence onto bianisotropic slabs. Two optimization methods, in our case the differential evolution (DE) algorithm and the Nelder-Mead simplex method, are used for the reconstruction at low frequencies. The Nelder-Mead simplex method is then used to obtain the solutions at higher frequencies, where the initial guess is obtained by the linear extrapolation of the solutions at previous frequencies. The proposed reconstruction method is tested with both noiseless and noisy data, and is proven feasible and robust.
Citation
Xudong Chen, Tomasz M. Grzegorczyk, and Jin Au Kong, "Optimization Approach to the Retrieval of the Constitutive Parameters of Slab of General Bianisotropic Medium," Progress In Electromagnetics Research, Vol. 60, 1-18, 2006.
doi:10.2528/PIER05120601
References

1. Smith, D. R. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett., Vol. 90, 077405, 2003.
doi:10.1103/PhysRevLett.90.077405

2. Grzegorczyk, T. M., M. Nikku, X. Chen, B.-I.Wu, and J. A. Kong, "Refraction laws for anisotropic media and their application to left-handed metamaterials," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1443-1450, 2005.
doi:10.1109/TMTT.2005.845206

3. Grzegorczyk, T. M., X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, "Reflection coefficients and Goos-Hanchen shift in anisotropic and bianisotropic left-handed metamaterials," Progress In Electromagn. Ressearch, Vol. 51, 83-113, 2005.
doi:10.2528/PIER04040901

4. Kong, J. A., Electromagnetic Wave Theory, EMW, 2000.

5. Kong, J. A., "Theorems of bianisotropic media," Proc. IEEE, Vol. 60, 1036-1046, 1972.

6. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

7. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterial," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

8. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

9. Chen, X., B. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E, Vol. 71, 046610, 2005.
doi:10.1103/PhysRevE.71.046610

10. Borzdov, G. N., "Lorentz-covariant surface impedance and characteristic matrix methods with applications to measurements of material parameters of linear media," Opt. Commun., Vol. 94, 159-173, 1992.
doi:10.1016/0030-4018(92)90425-Q

11. Borzdov, G. N., "Novel free-space techniques to characterize complex mediums," Electromagnetic Fields in Unconventional Materials and Structures, 83-124, 2000.

12. Rikte, S., G. Kristensson, and M. Andersson, "Propagation in bianisotropic media — reflection and transmission," IEE Proc. - Microw. Antennas Propag., Vol. 148, 29-36, 2001.
doi:10.1049/ip-map:20010215

13. Storn, R. and K. Price, "Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces," J. Global Optim., Vol. 11, 341-359, 1997.
doi:10.1023/A:1008202821328

14. Nelder, J. A. and R. Mead, "A simplex method for function minimization," Comput. J., Vol. 7, 308-313, 1965.

15. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, Wiley- Interscience, 2000.

16. Dmitriev, V., "Constitutive tensors of omega- and chiroferrites," Microwave Opt. Technol. Lett., Vol. 29, 201-205, 2001.
doi:10.1002/mop.1130

17. Chen, X., Inverse Problems in Electromagnetics, Ph.D. thesis, 2005.