Vol. 59
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-01-06
Conducting Sheath Helical Winding on the Core-Cladding Interface of a Lightguide Having a Piet Hein Super Elliptical Core Cross-Section and a Standard Optical Fiber of Circular Cross-Section-a Comparative Modal Analysis
By
Progress In Electromagnetics Research, Vol. 59, 231-249, 2006
Abstract
In this article, a theoretical and computational analysis has been made to obtain the modal dispersion characteristics of an unconventional optical waveguide with a Piet Hein core cross section having a conducting sheath helix winding on its core-cladding boundary. A simple analytical method using the vector boundary conditions has been utilized to get the modal eigen value equation. From this equation dispersion curves are obtained and plotted for some particular values of the pitch angles of the winding. Next, these predicted results are compared with those of a new optical fiber having a conducting sheath helix winding on its core-cladding boundary. It is seen that the cutoff values are somewhat lower for the Piet Hein lightguide than those for the circular guide. This is not unexpected since the Piet Hein curve approaches the shape of a square. The introduction of a conducting helical winding leads to a modification of the modal characteristics of the lightguides and gives us an additional means to control them.
Citation
Vivek Singh, S. Maurya, B. Prasad, and Sant Ojha, "Conducting Sheath Helical Winding on the Core-Cladding Interface of a Lightguide Having a Piet Hein Super Elliptical Core Cross-Section and a Standard Optical Fiber of Circular Cross-Section-a Comparative Modal Analysis," Progress In Electromagnetics Research, Vol. 59, 231-249, 2006.
doi:10.2528/PIER05100101
References

1. Clarricoats, P. J. B., "Propagation along bounded and unbounded dielectric rods," IEEE Monograph 409E, 1960.

2. Snitzer, E., "Cylindrical dielectric waveguide modes," J. Opt. Soc. Am., Vol. 51, 491-498, 1961.

3. Miller, S. E., E. A. J. Marcatili, and T. Li, "Research towards optical fiber transmission systems, Part I: The transmission medium," Proc. IEEE, Vol. 61, 1703-1751, 1973.

4. Kumar, A., V. Thyagaranjan, and A. K. Ghatak, "Analysis of rectangular core dielectric waveguides: An accurate perturbation approach," Opt. Lett., Vol. 8, 63-65, 1983.

5. Yeh, C., "Elliptical dielectric waveguide," J. Appl. Phys., Vol. 33, 3235-3242, 1962.
doi:10.1063/1.1931144

6. Yeh, C., "Modes in weakly guiding elliptical optical fibers," Opt. Quantum Electron, Vol. 8, 43-47, 1976.
doi:10.1007/BF00620439

7. Dyott, R. B., "Cutoff of the first order modes in elliptical dielectric waveguide: An experimental approach," Electron Lett., Vol. 26, 1721-1723, 1990.

8. Dyott, R. B., "Glass-fiber waveguide with triangular core," Electron Lett., Vol. 9, 288-290, 1973.

9. James, J. R. and I. N. L. Gallett, "Modal analysis of triangular cored fiber waveguide," Proc. IEEE, Vol. 120, 1362-1370, 1973.

10. Mishra, V., "A study on Peit Hein and other unconventional geometry in optical waveguides," Ph.D. Thesis, 1997.

11. Rao, M. P. S., B. Prasad, P. Khastgir, and S. P. Ojha, "Modal cutoff conditions for an optical waveguide with a hypocycloidal cross section," Microwave Opt. Technol. Lett., Vol. 14, 177-180, 1997.
doi:10.1002/(SICI)1098-2760(19970220)14:3<177::AID-MOP13>3.0.CO;2-5

12. Rao, M. P. S., V. Singh, B. Prasad, P. Khastgir, and S. P. Ojha, "An analytical study of the dispersion curves of an annular waveguide made of liquid crystal," Photonics and Optoelectronics, Vol. 5, 73-78, 1998.

13. Kaminow, I. P., W. L. Mammel, and H. P. Weber, "Metal clad optical waveguides: analytical and experimental study," Appl. Optics, 396-405, 1974.

14. Polky, J. N. and G. L. Mitchell, "Metal clad planar dielectric waveguide for integrated optics," J. Opt. Soc. Am., Vol. 64, 274-279, 1974.

15. Rollke, K. H. and W. Sohler, "Metal clad waveguides as cutoff polarizer for integrated optics," IEEE J. Quantum Electron, Vol. QE-13, 141-145, 1972.

16. Sletten, M. and S. Seshadri, "Thick metal surface-polariton polarizor for a planar optical waveguide," J. Opt. Soc. Am., Vol. 7, 1174-1184, 1990.

17. Sletten, M. and S. Seshadri, "Experimental investigation of a thin film surface polariton polarizor," J. Appl. Phys., Vol. 70, 574-579, 1991.
doi:10.1063/1.349658

18. Rao, M. P. S., B. Prasad, and S. P. Ojha, "Theoretical study of thin circular infrared filter with alternate concentric regions of dielectric and partially conducting materials," Photonis and Optoelectronics, Vol. 2, 157-167, 1994.

19. Singh, V., B. Prasad, and S. P. Ojha, "Weak guidance analysis and dispersion curves of an infrared lightguide having a core cross-section with a new types of asymmetric loop boundary," Optical Fiber Technology, Vol. 6, 290-298, 2000.
doi:10.1006/ofte.2000.0329

20. Bunch, K. J. and R. W. Grow, "The helically wrapped circular waveguide," IEEE. Trans. Electron. Devices, Vol. ED-34, 1873-1885, 1987.

21. Kumar, D., "Propagation characteristics of helical cladding elliptical step index fiber," Ph.D. Thesis, 1999.

22. Watkins, D. A., Topics in Electromagnetic Theory, 39-62, 39-62, 1958.

23. Pierce, J. R., Travel ling Wave Tubes, Vol. 23. Pierce, 229-230, 229-230, 1950.

24. Singh, V., B. Prasad, and S. P. Ojha, "Theoretical analysis and dispersion curves of an annular lightguide with a cross section bounded by two Piet Hein curves," J. of Electromagn. Waves and Appl., Vol. 17, 1025-1036, 2003.
doi:10.1163/156939303322519090

25. Singh, V., B. Prasad, and S. P. Ojha, "A comparative study of modal characteristic and waveguide dispersion of optical waveguide with three different closed loop cross sectional boundaries," Optik, Vol. 115, 281-288, 2004.

26. Yablonovitch, E., "Inhibited spontaneous emission in solid state and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

27. Joannoupoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.