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Abstract—In this article, a theoretical and computational analysis
has been made to obtain the modal dispersion characteristics of
an unconventional optical waveguide with a Piet Hein core cross
section having a conducting sheath helix winding on its core-cladding
boundary. A simple analytical method using the vector boundary
conditions has been utilized to get the modal eigen value equation.
From this equation dispersion curves are obtained and plotted for
some particular values of the pitch angles of the winding. Next, these
predicted results are compared with those of a new optical fiber having
a conducting sheath helix winding on its core-cladding boundary. It
is seen that the cutoff values are somewhat lower for the Piet Hein
lightguide than those for the circular guide. This is not unexpected
since the Piet Hein curve approaches the shape of a square. The
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introduction of a conducting helical winding leads to a modification of
the modal characteristics of the lightguides and gives us an additional
means to control them.

1. INTRODUCTION

The conventional optical fiber having a circular core cross-section
which is widely used in optical communication systems [1–3]. But
unconventional optical waveguides having non-circular core cross-
sections like elliptical, rectangular, triangular, Piet Hein hypocycloidal,
cardioidic cross-sections etc. [4–12] have also been studied with a view
to their possible use in integrated optical devices such as wavelength
filtering, coupling, semiconductor laser technology and optical sensors.

Recently metal-clad optical waveguides [13–18] have been studied
theoretically, experimentally and technically because these provide
potential applications, such as connecting the optical components to
other circuits, protecting the optical devices against stray light and
heat sinking. Metallic -cladding structure on an optical waveguide is
known as a TE-mode pass polarizer and is commercially applied to
various optical devices [16, 17].

More recently the authors [19] investigated the modal behaviour of
an unconventional optical waveguide having a core cross-section with a
new type of asymmetric loop boundary. This waveguide sustains only
a few modes, which is interesting and new in view of the generally
known result that distortion usually leads to an increase in the number
of sustained modes. The selection of such new types of unconventional
cross-sections [10–12] is not random and arbitrary but systematic.
Many of the geometries are the modifications or distortions of the
circular and rectangular cross-sections. The Piet Hein geometry stands
midway between the two. Also, the structures are chosen when a
mathematical analysis becomes feasible. The basic idea is to see how
a distortion of the cross-section or the introduction of a new material
may change the modal characteristics, such as the number of guided
modes sustained by the waveguide.

The relevance of this kind of analytical work is two-fold. It
provides us with the technique of treating very difficult problems in
an introductory way as a first step to obtain a basic insight so that it
may lead to more precise and elaborate analysis as a second step. Also
it is expected that theoretical work of this kind will provide the modal
characteristics of a variety of lightguides having a rich fund of results
from which technologists and researchers working in practical fields can
choose the required characteristics and structures in future when the
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Figure 1. The Piet Hein lightguide with a conducting helical winding
having the core refractive index n1, the cladding of refractive index n2

and the helical pitch angle ψ.

necessary fabrication technology becomes available. The possibility
of fabrication, if not already there, is not remote in view of current
advances in nanotechnology, if only the experimentalists are sufficiently
interested or encouraged to take up this sort of work.

In this paper we consider a lightguide with new geometrical and
structural features. The cross-section of the core-cladding interface is
a Piet Hein curve which in shape stands midway between a circle and
a square. On this core-cladding interface we introduce a conducting
sheath helical winding Fig. 1. The modal characteristics of such a
waveguide are next analytically obtained. For the sake of comparison,
we also obtain the modal characteristics of the conventional circular
fiber; on the core cladding interface of this fiber also we introduce a
conducting helical winding Fig. 2.

The winding is right-handed and the direction of propagation is
positive z direction. The winding angle of the helix ψ can take any
arbitrary value between 0 to π/2. But for left-handed winding, ψ can
be replaced by (π − ψ).

The idea of a helical optical waveguide [20, 21] in the field of
optical fiber technology stems from the travelling wave tube technology
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Figure 2. The standard circular optical fiber with a conducting helical
winding having core refractive index n1, the cladding of refractive index
n2 and the helical pitch angle ψ.

(TWT) in the microwave region [22, 23]. In that field, however, slow
wave structures are used. We consider fast wave structures. The
sheath helix can be obtained when many similar insulated and tight
conducting windings are made side by side. This will be possible in an
integrated way by using nanotechnology. In this case the property of
conduction is only in the helical direction but not in the perpendicular
direction. The periodicity of the structure will, as we shall see later,
introduce band gaps and thus this waveguide may be placed in the
category of photonic band gap structures which are currently receiving
much attention.

2. THEORETICAL CONSIDERATIONS

2.1. The Piet Hein Lightguide with the Conducting Winding

The Cross sectional view of the Piet Hein waveguide is shown in Fig. 1.
This shape in the general case represented by the equation
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a

)N
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y

b

)N

= 1 (1)
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where N can take any integral values exceeding 2 and a and b are the
semidiameters of the curve. For N = 2 the Piet Hein curve degenerates
into an ellipse. For this reason the curve is some times called a super
ellipse. For our modal analysis, to be specific, we have chosen N = 4.
To simplify the algebra, we choose the special case a = b = ρ.

In this case we have

x4 + y4 = ρ4 (2)

where ρ is a parameter related to the size of the Piet Hein core cross-
section. If we treat ρ as a variable, equation (1) represents a set of Piet
Hein curves with 0 < ρ < ∞. We next introduce a new coordinate
system in which the coordinates of a point are determined by the
intersection of two sets of curves; one set given by equation (1) and
the other set being the set of curves normal to the first set. The set of
normal curves is given by

1
x2

− 1
y2

=
1
ξ2

(3)

where ξ is to be treated as a new coordinate variable. If we fix the value
of ρ, we have a fixed curve. Using the new coordinates and Maxwell
equations we can obtain the expressions for the field E and H in terms
of the new coordinates. The details of this procedure are given in a
previous paper by the authors [24]. The longitudinal components of
the fields for the even modes, as a first approximation, can be written
as

Ez1 = AJ1(Udρ)F (ξ)ej(ωt−βz) (4)
Hz1 = BJ1(Udρ)F (ξ)ej(ωt−βz) (5)

}
core region

Ez2 = CK1(Wdρ)F (ξ)ej(ωt−βz) (6)
Hz2 = DK1(Wdρ)F (ξ)ej(ωt−βz) (7)

}
cladding region

where U2 = ω2µε1 − β2 and W 2 = β2 − ω2µε2. Here β is the axial
component of propagation vector, ω is the wave frequency, µ is the
permeability of non-magnetic medium, ε1 and ε2 are the permittivity
of the core and the cladding region respectively. Also d is a number
(
√

2)
1
2 which emerges in the analysis because of the peculiarity of the

geometrical shape and A, B, C and D are unknown constant to be
determinant. We also write the expressions for the tangential electrical
field components Eξ1, Hξ1, Eξ2, Hξ2 and also those for the radial field
components Eρ1, Hρ1, Eρ2, Hρ2.

Eξ1 =
−j

ω2µε1−β2

[
j
βν

ρ
AJ1(Udρ)−µ1ωUdBJ ′

1(Udρ)
]
F (ξ)ej(ωt−βz) (8)
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Hξ1 =
−j

ω2µε1−β2

[
j
βν

ρ
BJ1(Udρ)+ωε1UdAJ ′

1(Udρ)
]
F (ξ)ej(ωt−βz) (9)

Eξ2 =
−j

β2−ω2µε2

[
j
βν

ρ
CK1(Wdρ)−µ2ωWdDK ′

1(Wdρ)
]
F (ξ)ej(ωt−βz)

(10)

Hξ2 =
−j

β2−ω2µε2

[
j
βν

ρ
DK1(Wdρ)+ωε2WdCK ′

1(Wdρ)
]
F (ξ)ej(ωt−βz)

(11)

Here F (ξ) is a function of the coordinate ξ satisfying the symmetries
of the shape. Obviously ρ and ξ are analogous to the polar circular
coordinates r and ϕ respectively.

As stated in our earlier paper [24] these equation are more
reliable near the corner region, than in region far from corners. In
order to have a guided field the following condition must be satisfied
n1k0 > β > n2k0, where n1 and n2 are the refractive indices of
the core region and cladding regions respectively and k0 is the free
space propagation constant. The boundary conditions demand that
the tangential components of the electric field &E and the magnetic
field &H at the interface should be continuous. In this structure, we use
the sheath helix cladding region.

The electric field along the direction of winding determined by the
pitch angle ψ should be zero. Thus we must have

Ez1 sinψ + Eξ1 cosψ = 0 (12)
Ez2 sinψ + Eξ2 cosψ = 0 (13)

The electric field components normal to the direction of winding are
assumed to be continuous. Thus

Ez1 cosψ − Eξ1 sinψ = Ez2 cosψ − Eξ2 sinψ (14)
Hz1 sinψ + Hξ1 cosψ = Hz2 sinψ + Hξ2 cosψ (15)

Using the above expressions for the field components and the boundary
conditions, four equation are obtained involving four unknown
constants, which will yield a non-trivial solution if the determinant
whose elements are the coefficients of these unknown constants is set
equal to zero. Thus we have∣∣∣∣∣∣∣∣∣

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

∣∣∣∣∣∣∣∣∣
= 0 (16)
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where

A11 = J1(Udρ)
[
sinψ +

β

ρU2
cosψ

]

A12 =
jωµ1dJ

′
1(Udρ) cosψ
U

A13 = 0
A14 = 0
A21 = 0
A22 = 0

A23 = K1(Wdρ)
[
sinψ +

βν

ρW 2
cosψ

]

A24 =
jωµ2dK

′
1(Wdρ) cosψ
W

A31 = J1(Udρ)
[
cosψ − βν

ρU2
sinψ

]

A32 = −jωµ1dJ
′
1(Udρ) sinψ

U

A33 = −K1(Wdρ)
[
cosψ − βν

ρW 2
sinψ

]

A34 =
jωµ2dK

′
1(Wdρ) sinψ

W

A41 = −jdωε1J
′
1(Udρ) cosψ
U

A42 = J1(Udρ)
[
sinψ +

βν

ρU2
cosψ

]

A43 =
jdωε2K

′
1(Wdρ) cosψ
W

A44 = −K1(Wdρ)
[
sinψ +

βν

ρW 2
cosψ

]

Expanding the determinant and after some simplification, one can have
finally the following characteristic eigen value equation for the lowest
order guided modes.

U
J1(Udρ)
J ′

1(Udρ)

(
sinψ +

νβ

U2ρ
cosψ

)2

−W
K1(Wdρ)
K ′
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−k2
0n

2
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J ′
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cos2 ψ + k2

0n
2
2

d2

W

K ′
1(Udρ)

K1(Udρ)
cos2 ψ = 0 (17)
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2.2. The Circular Fiber with Conducting Windings

The guided modes along this type of fiber can be analysed in a standard
way, with a cylindrical system of co-ordinates (r, ϕ, z) assuming a
harmonic time and z-dependence ej(ωt−βz) of the fields. In order to
have a guided field the following condition must be satisfied n1k0 >
β > n2k0, where n1 and n2 are the refractive indices of the core region
and the cladding regions respectively. The solution of the axial field
components can now be written as

Ez1 = AJν(Ua)F (ξ)ej(ωt−βz) (18)
Hz1 = BJν(Ua)F (ξ)ej(ωt−βz) (19)

}
core region

Ez2 = CKν(Wa)F (ξ)ej(ωt−βz) (20)
Hz2 = DKν(Wa)F (ξ)ej(ωt−βz) (21)

}
cladding region

The transverse components can be obtained by using Maxwell’s
standard relations. The electric and magnetic field components Eφ

and Hφ for each region can be written as

Eφ1 =
−j

ω2µε1−β2

[
j
βν

a
AJ1(Ua)−µ1ωUBJ ′

1(Ua)
]
F (ξ)ej(ωt−βz) (22)

Hφ1 =
−j

ω2µε1−β2

[
j
βν

a
BJ1(Ua)+ωε1UAJ ′

1(Ua)
]
F (ξ)ej(ωt−βz) (23)

Eφ2 =
−j

β2−ω2µε2

[
j
βν

a
CK1(Wa)−µ2ωWDK ′

1(Wa)
]
F (ξ)ej(ωt−βz)

(24)

Hφ2 =
−j

β2−ω2µε2

[
j
βν

a
DK1(Wa)+ωε2WCK ′

1(Wa)
]
F (ξ)ej(ωt−βz)

(25)

By using the above boundary conditions for conducting sheath helix
equations (12) to equation (15) and by using equations (18) to
equations (25), we can get the following characteristic equation for
the lowest order guided modes.

U
J1(Ua)
J ′

1(Ua)

(
sinψ +

νβ

U2a
cosψ

)2

−W
K1(Wa)
K ′

1(Wa)

(
sinψ +

νβ

W 2a
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)2

−k2
0n

2
1

U

J ′
1(Ua)

J1(Ua)
cos2 ψ +

k2
0n

2
2

W

K ′
1(Ua)

K1(Ua)
cos2 ψ = 0 (26)
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Figure 3. Dispersion curves of normalized propagation constant (b)
versus normalized frequency parameter V for pitch angle ψ = 0◦ (Piet
Hein lightguide).

3. NUMERICAL RESULTS AND DISCUSSIONS

We now make some sample computations based on equation (17) and
equation (26). We choose n1 = 1.50, n2 = 1.46, λ0 = 1.55 × 10−6 m
and plot some dispersion curves which are shown in Fig. 3 to Fig. 12.
Here we have introduced two dimensionless parameters b and V , as is

usually done. We have b =
β2

k2
0

−n2
2

n2
1−n2

2
=normalized propagation constant

and V = 2πa
λ0

(n2
1 − n2

2)
1
2 = normalized frequency parameter. We also

obtain the cutoff-values for the same modes which can be seen directly
from the dispersion curves or obtained from the cutoff equations, easily
derivable from equation (17) and equation (26) by allowing W to tend
to zero. These values and their dependence on the helical pitch angle
ψ can be seen for the two lightguides in Table 1 and Table 2.

We want to draw the reader’s attention to some interesting
features of the dispersion curves shown in Fig. 3 to Fig. 12. They
all have the standard expected shape, but except for the lowest order
modes, they come in pairs, that is, the cutoff values for two adjacent
modes converge. This means that one effect of the conducting winding
is to split the modes and remove a degeneracy which is hidden in
conventional lightguides without these windings. Although we have not
studied polarization in this paper, this implies that the helical winding
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Table 1. Cutoff Vc-values for some low order modes (ν = 1) for
different values of the pitch angle ψ. (Piet Hein waveguide with helical
winding).

S.No. ψ =0 ψ =30 ψ =45 ψ =60 ψ =90

1. 1.489 0.042 0.069 0.167 1.562
2. 3.111 1.534 1.394 1.255 3.208
3. 3.236 1.553 3.099 1.563 4.603
4. 5.858 3.110 3.099 3.096 5.900
5. 5.928 3.264 5.858 3.097 7.253
6. 8.523 5.858 5.998 5.845 8.648
7. 8.648 5.928 8.648 5.928 9.904
8. 11.381 8.643 8.649 8.632 11.299
9. 11.382 8.648 11.428 8.634 12.554

10. - 11.142 11.438 11.381 -
11. - 11.143 - 11.382 -

o o o o

Table 2. Cutoff Vc-values for some low order modes (ν = 1) for
different values of the pitch angle ψ. (circular fiber with helical
winding).

S.No. ψ =0 ψ =30 ψ =45 ψ =60 ψ =90

1. 1.771 0.065 0.394 0.278 1.855
2. 3.702 1.673 1.673 1.534 3.808
3. 3.905 1.855 1.855 1.869 5.440
4. 6.974 3.693 3.688 3.682 7.016
5. 7.114 3.905 3.696 3.905 8.648
6. 10.183 6.974 6.974 6.974 10.183
7. 10.322 7.164 7.250 7.142 11.857
8. - 10.183 10.183 10.183 -
9. - 10.322 10.280 10.322 -

o o o o

possibly introduces important changes in polarization properties. This
we except to consider in a future study.

We also observe that another effect of the conducting helical
winding is to reduce the cutoff values for the circular fiber, thus in
increasing the number of modes. This effect is undesirable for the
possible use of these lightguides for long distance communication,
but may be usefully exploited if one is interested in devices with
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Figure 4. Dispersion curves of normalized propagation constant (b)
versus normalized frequency parameter V for pitch angle ψ = 30◦ (Piet
Hein lightguide).

particular properties. Also the cutoff values are somewhat smaller
for the Piet Hein shape than for the circular shape. This feature is
also expected since the Piet Hein shape approaches the square and
it is well known that rectangular waveguides have lower modal cutoff
values than circular waveguides. The Piet Hein shape therefore will
be suitable for application in integrated optical devices and will have
the advantage that since they have no corner discontinuities will have
lesser scattering problems.

An anomalous feature in the dispersion curves is observable for
ψ = 30◦, 45◦ and 60◦ for both types of lightguide [Fig. 4, Fig. 5, Fig. 6,
Fig. 9, Fig. 10, Fig. 11] near the lowest order mode. It is found that
on the left of the lowest cutoff values, portions of curves appear which
have no resemblance with standard dispersion curves, and have no
cutoff values. This means that for very small value of V (in particular
small sizes) anomalous dispersion properties may occur in helically
wound lightguides. In view of the complication of the structure, a
simple physical explanation of this feature is not available. We are,
however, more fortunate in the case of another apparent anomalous
feature in some of the curves. We find that some curves have gaps of
discontinuities between some values of V . These represent the band
gaps or the forbidden bands of the structure. These are induced by
the periodicity of the helical windings and are also found in slow wave
structures [22]. As a matter of fact, these are expected and entitle
our waveguide to be put into the category of the photonic band gap
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Figure 5. Dispersion curves of normalized propagation constant (b)
versus normalized frequency parameter V for pitch angle ψ = 45◦ (Piet
Hein lightguide).

Figure 6. Dispersion curves of normalized propagation constant (b)
versus normalized frequency parameter V for pitch angle ψ = 60◦ (Piet
Hein lightguide).
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Figure 7. Dispersion curves of normalized propagation constant (b)
versus normalized frequency parameter V for pitch angle ψ = 90◦ (Piet
Hein lightguide).

Figure 8. Dispersion curves of normalized propagation constant (b)
versus normalized frequency parameter V for pitch angle ψ = 0◦
(Circular fiber).
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Figure 9. Dispersion curves of normalized propagation constant (b)
versus normalized frequency parameter V for pitch angle ψ = 30◦
(Circular fiber).

Figure 10. Dispersion curves of normalized propagation constant (b)
versus normalized frequency parameter V for pitch angle ψ = 45◦
(Circular fiber).
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Figure 11. Dispersion curves of normalized propagation constant (b)
versus normalized frequency parameter V for pitch angle ψ = 60◦
(Circular fiber).

Figure 12. Dispersion curves of normalized propagation constant (b)
versus normalized frequency parameter V for pitch angle ψ = 90◦
(Circular fiber).
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Figure 13. The dependence of the cutoff values Vc on the pitch angle
ψ, for Piet-Hein optical waveguide.

structures [26, 27].
We now come to Table 1 and Table 2. We note particularly that

the dependence of the cutoff V -value (Vc) on ψ is such that as ψ is
increased, there is a drastic fall in Vc at ψ = 30◦ and then a small
increase as ψ goes from 30◦ to 60◦ ; then there is a quick rise as
ψ changes from 60◦ to 90◦. Thus the two most sensitive regions
in respect of the influence of the helical pitch angle ψ on the cutoff
values and the modal properties of lightguides are the ranges ψ = 0◦
to ψ = 30◦ and ψ = 60◦ to ψ = 90◦ and it is in these ranges the
new lightguides are expected to have potential applications with ψ
as a means for controlling the modal properties. Incidentally, the
anomalous dispersion curves do not appear in these ranges of ψ values.
For a clearer understanding of the dependence of the cutoff values Vc

on the pitch angle ψ, we supplements Table 1 and Table 2 by the
corresponding graphical representations Fig. 13 and Fig. 14. Table 1
and Table 2 are still important in view of the computational values
they show.

In this paper our main interest has been on the modal behaviour.
We are aware that the field distribution of the modal field is of
considerable importance and we hope to present this aspect in a future
communication.
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Figure 14. The dependence of the cutoff values Vc on the pitch angle
ψ, for circular fiber.
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