Vol. 59
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-01-06
Prediction of Propagation Characteristics in Indoor Radio Communication Environments
By
, Vol. 59, 151-174, 2006
Abstract
In this work, we present a semi empirical approach and the analytical model on how to predict the total path loss in various indoor communication links, taking into account the new analytical methods of the derivation of the fading phenomenon between floors and along corridors, respectively. We take into account the stochastic method of slow and fast fading estimations, caused by diffraction and multipath phenomena, respectively. The statistical parameters required for statistical description of the diffraction and multipath phenomena, such as the standard deviations of the signal strength due to slow and fast fading are obtained from the corresponding measurements. The path loss characteristics together with evaluated parameters of slow and fast fading give a more precise link budget predictor, and obtain full radio coverage of all subscribers located in the area of service inside each building. Based on strict and completed path loss prediction, an algorithm of link budget performance is presented for different scenarios of radio propagation within indoor communication links. Results of proposed unified approach are compared with the analytical Bertoni's model, which is well-known and usually used in link budget design in various indoor environments. The results are also compared with measurements carried out for different propagation scenarios, along corridor and between floors, occurred in the indoor communication channels. A better agreement with experimental data is obtained compared to the model in consideration.
Citation
Nathalie Yarkony, and Nathan Blaunstein, "Prediction of Propagation Characteristics in Indoor Radio Communication Environments," , Vol. 59, 151-174, 2006.
doi:10.2528/PIER05090801
References

1. Bertoni, H. L., RadioPropagationforModernWirelessSystems, PrenticeHall PTR, 2000.

2. Blaunstein, N., Wireless CommunicationSystems, 417-489, Handbook of EngineeringElectromagnetics, 2004.

3. Rappaport, T. S., WirelessCommunications, PrenticeHall PTR, 1996.

4. Saunders, S. R., Antennas and Propagation for Wireless CommunicationSystems, J. Wiley&Sons, 1999.

5. Cox, D. C., R. R. Murray, and A. W. Norris, "Measurements of 800 MHz radio transmission into buildings with metallic walls," AT&T Bel l Lab. Tech. J., Vol. 62, 2695-2717, 1983.

6. Davidson, A. and C. Hill, "Measurement of building penetration into medium building at 900 and 1500 MHz," IEEE Trans. Veh. Technol., Vol. 46, 161-167, 1997.
doi:10.1109/25.554748

7. Turkmani, A. M. D. and A. F. de Toledo, "Modeling of radio transmission into and within multistory buildings at 900, 1800, and 2300 MHz," IEE Proc.-1, Vol. 40, 462-470, 1993.

8. Alexander, S. E., "Radio propagation within buildings at 900 MHz," Electronics Letters, Vol. 18, No. 21, 913-914, 1982.

9. Hashemi, H., "The indoor radio propagation channel," Proc. IEEE, Vol. 81, No. 7, 943-968, 1993.
doi:10.1109/5.231342

10. Lemieux, J. F., M. Tanany, and H. M. Hafez, "Experimental evaluation of space/frequency/polarization diversity in the indoor wireless channel," IEEE Trans. Veh. Technol., Vol. 40, No. 3, 569-574, 1991.
doi:10.1109/25.97511

11. Rappaport, T. S., "Characterization of UHF multipath radio channels in factory buildings," IEEE Trans. Antennas Propagat., Vol. 37, No. 8, 1058-1069, 1989.
doi:10.1109/8.34144

12. Devasirvatham, D. M., M. J. Krain, and T. S. Rappaport, "Radio propagation measurements at 850 MHz, 1.7 GHz, and 4.0 GHz inside two dissimilar office buildings," Electronics Letters, Vol. 26, No. 7, 445-447, 1990.

13. Rappaport, T. S. and D. A. Hawbaker, "Wide-band microwave propagation parameters using cellular and linear polarized antennas for indoor wireless channels," IEEE Trans. on Communications, Vol. 40, No. 2, 231-242, 1992.
doi:10.1109/26.129185

14. Tarng, J. H., W. R. Chang, and B. J. Hsu, "Three- dimensional modeling of 900 MHz and 2.44 GHz radio propagation in corridors," IEEE Trans. Veh. Technol., Vol. 46, 519-526, 1997.
doi:10.1109/25.580790

15. Gibson, T. B. and D. C. Jenn, "Prediction and measurements of wall intersection loss," IEEE Trans. Antennas Propagat., Vol. 47, 55-57, 1999.
doi:10.1109/8.752988

16. Lafortune, J. F. and M. Lecours, "Measurement and modeling of propagation losses in a building at 900 MHz," IEEE Trans. Veh. Technol., Vol. 39, 101-108, 1990.
doi:10.1109/25.54226

17. Arnod, H. W., R. R. Murray, and D. C. Cox, "815 MHz radio attenuation measured within two commercial buildings," IEEE Trans. Antennas Propagat., Vol. 37, 1335-1339, 1989.
doi:10.1109/8.43547

18. Whitman, G. M., K. S. Kim, and E. Niver, "A theoretical modelfor radio signal attenuation inside buildings," IEEE Trans. Veh. Technol., Vol. 44, 621-629, 1995.
doi:10.1109/25.406630

19. Seidel, S. Y. and T. S. Rappaport, "Site-specific propagation prediction for wireless in-building personal communication system design," IEEE Trans. Veh. Technol., Vol. 43, 879-891, 1994.
doi:10.1109/25.330150

20. Seidel, S. Y. and T. S. Rappaport, "914 MHz path loss prediction models for indoor wireless communication in multifloored buildings," IEEE Trans. Antennas Propagat., Vol. 40, No. 2, 207-217, 1992.
doi:10.1109/8.127405

21. Honcharenko, W., H. L. Bertoni, J. Dailing, J. Qian, and H. D. Lee, "Mechanisms governing UHF propagation on single floors in modern office buildings," IEEE Trans. Veh. Technol., Vol. 41, No. 4, 496-504, 1992.
doi:10.1109/25.182602

22. Honcharenko, W., H. L. Bertoni, and J. Dailing, "Mechanisms governing propagation between different floors in buildings," IEEE Trans. Antennas Propagat., Vol. 41, No. 6, 787-790, 1993.
doi:10.1109/8.250441

23. Dersch, U. and E. Zollinger, "Propagation mechanisms in microcell and indoor environments," IEEE Trans. Veh. Technol., Vol. 43, 1058-1066, 1994.
doi:10.1109/25.330169

24. Clarke, R. H., "A statistical theory of mobile-radio reception," Bel l Systems Technical Journal, Vol. 47, 957-1000, 1968.

25. Rappaport, T. S. et al., "Statistical channel impulse response models for factory and open plan building communication system design," IEEE Trans. on Communications, Vol. 39, No. 5, 794-805, 1991.
doi:10.1109/26.87142

26. Devasirvatham, D. M. J., "Time delay spread and signal level measurements of 850 MHz radio waves in building environments," IEEE Trans. Antennas Propagat., Vol. 34, No. 2, 1300-1305, 1986.
doi:10.1109/TAP.1986.1143754

27. Rappaport, T. S. and V. Fung, "Simulation of bit error performance of FSK, BPSK, and π/4-DQPSK in flat fading indoor radio channels using measurement-based channel model," IEEE Trans. Veh. Technol., Vol. 40, No. 4, 731-739, 1991.
doi:10.1109/25.108384

28. Kanatas, A. G., I. D. Kountouris, G. B. Kostraras, and P. Constantinou, "A UTD propagation model in urban microcellular environments," IEEE Trans. Veh. Technol., Vol. 46, No. 2, 185-193, 1997.
doi:10.1109/25.554751

29. Katedra, M. F., J. Perez, F. S. de Adana, and O. Gutierrez, "Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios," IEEE Antennas Propagat. Magazine, Vol. 40, No. 2, 15-28, 1998.
doi:10.1109/74.683539

30. Kim, S. C., B. J. Guarino, Jr., T. M. Willis, III, et al. "Radio propagation measurements and prediction using three dimensional ray tracing in urban environments at 908 MHz and 1.9 GHz," IEEE Trans. Veh. Technol., Vol. 48, 931-946, 1999.
doi:10.1109/25.790560

31. Keenan, J. M. and A. J. Motley, "Radio coverage in buildings," BT Tech. J., Vol. 8, No. 1, 19-24, 1990.

32. "Propagation data and prediction models for the planning of indoor communication systems and local area networks in the frequency range 900 MHz to 100 GHz," International Telecommunication Union, ITU-R Recommendation, 123, 1997.

33. Blaunstein, N., "Average field attenuation in the non-regular impedance street waveguide," IEEE Trans. on Antennas Prop- agation, Vol. 46, No. 12, 1782-1789, 1998.
doi:10.1109/8.743813