1. Mitchner, M. and C. H. Kruger, Partial ly Ionized Gases, John Wiley & Sons, 1973.
2. Sze, S. M., Physics of Semiconductor Devices, 366-368, 2nd ed., 1999.
3. Davis, M. E. and J. A. McCammon, "Electrostatics in bio-molecular structure and dynamics," Chemical Reviews, Vol. 90, 509-521, 1990.
doi:10.1021/cr00101a005
4. Brown, G. M., Modern Mathematics for Engineers, E. F. Beckenbach (ed.), 1956.
5. Le Coz, Y. L., H. J. Greub, and R. B. Iverson, "Performance of random walk capacitance extractors for IC interconnects: a numerical study," Solid-State Electronics, Vol. 42, 581-588, 1998.
doi:10.1016/S0038-1101(97)00283-9
6. Le Coz, Y. L., R. B. Iverson, T. L. Sham, H. F. Tiersten, and M. S. Shepard, "Theory of a floating random walk algorithm for solving the steady-state heat equation in complex materially inhomogeneous rectilinear domains," Numerical Heat Transfer, Vol. 26, 353-366, 1994.
7. Haberman, R., Elementary Applied Partial Differential Equations, 3rd ed., 1998.
8. Hwang, C.-O. and M. Mascagni, "Efficient modified 'walk on spheres' algorithm for the linearized Poisson-Boltzmann equation," App. Phys. Lett., Vol. 78, No. 6, 787-789, 2001.
doi:10.1063/1.1345817
9. Mascagni, M. and N. A. Simonov, "Monte carlo methods for calculating the electrostatic energy of a molecule," Proceedings of the 2003 International Conference on Computational Science (ICCS 2003)..
10. Chatterjee, K. and J. Poggie, "A meshless stochastic algorithm for the solution of the nonlinear Poisson-Boltzmann equation in the context of plasma discharge modeling: 1D analytical benchmark," Proceedings of the 17th AIAA Computational Fluid Dynamics Conference, 6-9.
11. Chatterjee, K. and J. Poggie, "A two-dimensional floating random-walk algorithm for the solution of the nonlinear Poisson-Boltzmann equation: application to the modeling of plasma sheaths," Proceedings of the 3rd MIT Conference on Computational Fluid and Solid Mechanics, 14-17, 2005.
12. Sobol, I. M., A Primer for the Monte Carlo Method, CRC Press, 1994.
13. Curtiss, J. H., "Monte carlo methods for the iteration of linear operators," J. Math. and Phys., Vol. 32, 209-232, 1954.
14. Sabelfeld, K. K. and N. A. Simonov, Random Walks on Boundary for Solving PDEs, 119-120, 119-120, 1994.
15. Chatterjee, K., "Development of a floating random walk algorithm for solving Maxwell's equations in complex IC-interconnect structures," Rensselaer Polytechnic Institute, 48106-1346.
16. Chatterjee, K. and Y. L. Le Coz, "A floating random-walk algorithm based on iterative perturbation theory: solution of the 2D vector-potential maxwell-helmholtz equation," Applied Computational Electromagnetics Society Journal, Vol. 18, No. 1, 48-57, 2003.
17. Hammersley, J. M. and D. C. Handscomb, Monte Carlo Methods, 50-54, 50-54, 1964.