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Abstract—This paper presents a new three-dimensional floating
random-walk (FRW) algorithm for the solution of the Nonlinear
Poisson-Boltzmann (NPB) equation. The FRW method has not
been previously used in the numerical solution of the NPB equation
(and other nonlinear equations) because of the non-availability of
analytical expressions for volumetric Green’s functions. In the past,
numerical studies using the FRW method have examined only the
linearized Poisson-Boltzmann equation, producing solutions that are
only accurate for small values of the potential. No such linearization
is required for this algorithm. An approximate expression for a
volumetric Green’s functions has been calculated with the help of
a novel use of perturbation theory, and the resultant integral form
has been incorporated within the FRW framework. The algorithm
requires no discretization of either the volume or the surface of the
problem domains, and hence the memory requirements are expected to
be lower than approaches based on spatial discretization, such as finite-
difference methods. Another advantage of this algorithm is that each
random walk is independent, so that the computational procedure is
inherently parallelizable and an almost linear increase in computational
speed is expected with increase in the number of processors. We have
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recently published the preliminary results for benchmark problems in
one and two dimensions. In this work, we present our results for
benchmark problems in three dimensions and demonstrate excellent
agreement between the FRW- and finite-difference based algorithms.
We also present the results of parallelization of the newly developed
FRW algorithm. The solution of the NPB equation has applications in
diverse branches of science and engineering including (but not limited
to) the modeling of plasma discharges, semiconductor device modeling
and the modeling of biomolecular structures and dynamics.

1. INTRODUCTION

The solution of the NPB equation has widespread applications in
science and engineering. These applications range from the modeling
of the plasma-sheath transition [1], semiconductor device modeling [2]
and the modeling of biomolecular structures and dynamics [3]. In
this paper, we address the efficient solution of the NPB equation by
developing a stochastic algorithm based on the FRW method [4–6].

The FRW method is based on probabilistic interpretations of
deterministic equations. The method is completely meshless and
requires no discretization of either the volume or the surface of problem
domains. As a result, the memory requirements for complicated
problem geometries are expected to be significantly lower than for
methods based on spatial discretization. Furthermore, each random
walk is independent, so that the method is inherently parallelizable.
In spite of its many advantages, the FRW method has not been applied
in the numerical solution of NPB equation (and other important
nonlinear equations) because analytical expressions for volumetric
Green’s functions [7] are not available. In particular, previous
numerical studies using FRW algorithms [8, 9] have examined the
linearized Poisson-Boltzmann equation, restricting the applicability
of the solution to small values of the potential. Here we present a
new technique that eliminates this restriction. We have previously
presented the results for a one-dimensional [10] and a two- dimensional
[11] floating random-walk algorithm for the NPB equation subject
to Dirichlet [7] boundary conditions. In this paper, we extend
this algorithm to three-dimensional problem geometries and present
a detailed formulation, validation with finite-difference benchmarks,
and parallelization of this newly developed algorithm. But before
presenting the specifics of the algorithm, we will give an overview of
the FRW method.
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2. OVERVIEW OF THE FRW METHOD

The FRW method is a generalization of the Monte Carlo integration
method [12], a statistical approach to estimating integrals. Given a
differential equation, with a differential operator L,

L [U(r)] = f(r), (1)

the solution U(r) is a function of the three-dimensional position vector
r. The function f(r) is a source term. The Green’s functions for Eq. (1)
are the solutions of the differential equation

L [G(r|ro)] = δ(r − ro), (2)

subject to specified boundary conditions. We assume that the operator
L is of the Sturm-Liouville [7] form: L = ∇ · [p(r)∇] + q(r), where
p(r) and q(r) are known functions of r. Using Green’s integral
representation [7], U(r) can be written as

U(ro) =
∫∫

V

∫
dvG(r|ro)f(r) −©

∫
S

∫
[ds · ∇rU(r)] p(r)G(r|ro)

+ ©
∫
S

∫
[ds · ∇rG(r|ro)] p(r)U(r). (3)

The first term on the right hand side of Eq. (3) is a volume integral
involving the source term in the entire volume V of interest. The
second and third terms are vector surface integrals over the surface S
enclosing V , where ds is a vector whose magnitude is equal to that
of an infinitesimally small area unit on the surface S and directed
normally outward from the center of the area unit. The term G(r|ro)
is often referred to as the volume Green’s function and the term
∇rG(r|ro) is called the surface Green’s function. The second integral
corresponds to the Neumann [7] boundary condition while the third
integral corresponds to the Dirichlet boundary condition.

Eq. (3) forms the mathematical basis of the FRW method. To
evaluate the solution to Eq. (1) at a particular point in the domain of
interest, we consider [4–6] maximal spheres, cubes, or any geometrical
object for which the solution to Eq. (2) is known. We then make
random hops to the surface of that geometrical object based on any
predefined probability density. The weights for such random hops
are determined by sampling the various integrands in Eq. (3). For
example, in the case of a Dirichlet problem with no source term [that
is, f(r) = 0], the problem reduces to a Monte Carlo [12] integration of
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an infinite-dimensional integral as given by:

U(ro) =
∮
S1

ds1K(ro|r1)
∮
S2

ds2K(r1|r2)

· · · · · ·
∮
Sn

dsnK(rn−1|rn)U(rn),

K(rn−1|rn) = p(rn) |∇rnG (rn−1|rn)| cos (γn−1,n) ,

(4)

where γn−1,n is the angle between ∇rnG (rn−1|rn) and dsn. The
successive surface integrals in Eq. (4) relate to successive random
hops across the problem domain and the weight factors of the form
K (rn−1|rn) are derived from the third integral term on the right hand
side of Eq. (3) that corresponds to the Dirichlet boundary condition.
A particular random-walk is terminated at the boundary where the
solution is known and the successive weight factors multiplied by the
solution at the boundary yields a particular sample of the solution.
A numerical solution of Eq. (1) is obtained by averaging over a
statistically large number of such samples. A schematic diagram of
circular random-walks on a circular problem domain is shown in Fig. 1.

At this point, we observe that this method does not require

A (n)

r1

r1

r1

r2

r3

r2

Figure 1. Schematic diagram of circular random-walks on a
circular problem domain. One-, two- and three-hop random-walks are
represented.
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any discretization because the solution can be evaluated at the point
of origination of the random walks irrespective of the solution at
any other point. We can also note that this method is inherently
parallelizable as different random-walks can be performed on different
processors and inter-processor communication is required only during
the final averaging of the contributions from different walks. In spite
of these unique advantages, the floating random-walk method has not
being applied to the NPB equation and other important nonlinear
equations. This is due to the absence of corresponding analytical
expressions for volumetric Green’s functions. Early researchers in the
area expressed the apprehension that the extension of the stochastic
solution methodology to nonlinear problems might not be possible. In
a 1954 paper [13], J. R. Curtiss wrote: “So far as the author is aware,
the extension of Monte Carlo methods to non-linear processes has not
yet been accomplished and may be impossible.” Stochastic approaches
to solving nonlinear equations (in particular the NPB equation) that
have been suggested in literature [14] involve an iterative solution of a
series of linear problems. In our proposed approach, an approximate
(yet accurate) expression for the Green’s function for the nonlinear
problem is obtained through perturbation theory, which gives rise to
an integral formulation that is valid for the entire nonlinear problem.
As a result, our algorithm does not have any iteration steps, and
thus has a lower computational cost. The validity of such an integral
expression is maintained by restricting the size of a random hop.
Increasing the order of perturbation in the Green’s function would
allow one to increase the hop size, thus increasing computational
speed. An approach utilizing a perturbation-based Green’s function
was used to develop an FRW algorithm for the Helmholtz equation
in heterogeneous problem domains (important for IC interconnect
analysis at high frequencies) by the first author in Ref. [15, 16], where
the idea of extending the approach to nonlinear problems was proposed.
Later that idea was extended to the NPB equation in one and two
dimensions [10, 11]. In this work, a three-dimensional volumetric
Green’s function truncated to the first order (with a correspondingly
restricted hop size) has been calculated and will be presented in the
next section.

3. FORMULATION OF THE ALGORITHM

In our problem of interest, the dependent variable φ is governed by the
NPB equation given as

∇2φ =
1
c2

(
ekφ(r) − e−kφ(r)

)
, r ∈ W, (5)
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where r(r, θ, ϕ) is the three-dimensional position coordinate, c and
k are constants, and W is the three-dimensional problem domain.
Dirichlet boundary conditions have been imposed:

φ = g(r), r ∈ ∂W (6)

where ∂W is the boundary of the domain W . Eq. (5) can be normalized
to

1
r̂2

∂

∂r̂

(
r̂2∂φ̂

∂r̂

)
1

r̂2 sin θ̂

∂

∂θ̂

(
sin θ̂

∂φ̂

∂θ̂

)
+

1
r̂2 sin2 θ̂

∂2φ̂

∂ϕ̂2
= eφ̂ − e−φ̂, (7)

where r̂ = r/λ, θ̂ = θ and ϕ̂ = ϕ; φ̂ = kφ, λ = c√
k
. The value

of the solution is assumed to be known on the surface encompassing
the problem domain of interest. We will first derive an approximate
expression for a volumetric Green’s function G(r̂|r̂o) for Eq. (7) on a
spherical domain, given a Dirac-delta function centered at r̂o inside
the domain, and boundary conditions such that the Green’s function
on the surface of the sphere is zero. Such a Green’s function is given
as the solution of the equation

∇2G (r̂|r̂o) −
(
eG − e−G

)
= δ (r̂ − r̂o) (8)

We further normalize the length scales to the radius R of the spherical
domain and substitute ρ̂ = r̂

R and ρ̂o = r̂o
R in Eq. (7). The twice-

normalized Green’s function equation is written as

∇2
ρ̂G−R2

(
eG − e−G

)
= δ (ρ̂ − ρ̂o) . (9)

A zeroth-order approximation for the volumetric Green’s function is
the solution of equation

∇2
ρ̂G

(0) (ρ̂|ρ̂o) = δ (ρ̂ − ρ̂o) , (10)

which is given as [7]

G(0) (ρ̂|ρ̂o) =
1
4π

[
1

{1+ρ̂2ρ̂2
o−2ρ̂ρ̂oC}

1
2

− 1

{ρ̂2+ρ̂2
o−2ρ̂ρ̂oC}

1
2

]
,

C = cos θ̂ cos θ̂o + sin θ̂ sin θ̂o cos (ϕ̂− ϕ̂o) .

(11)

Eq. (11) can be used to obtain a first-order approximation to the
volumetric Green’s function and is given as a solution of the equation

∇2
ρ̂G

(1) = δ (ρ̂ − ρ̂o) + R2
(
eG(0) − e−G(0)

)
. (12)



Progress In Electromagnetics Research, PIER 57, 2006 243

Based on Eqs. (11) and (12), G(1) (ρ̂|ρ̂o) is given by the expression

G(1) (ρ̂|ρ̂o) = G(0) (ρ̂|ρ̂o) + R2

1∫
0

π∫
0

2π∫
0

[
dρ̂′dθ̂′dϕ̂′ (ρ̂′)2 sin θ̂′

×G(0) (
ρ̂|ρ̂′) f {

G(0) (
ρ̂′|ρ̂o

)}]
; f{y} = ey − e−y. (13)

Based on this approximate expression for the volumetric Green’s
function and Eq. (3), an expression for normalized potential at a point
ρ̂o is given by a line integral over the circumference of the unit circle
and is expressed as

φ̂(ρ̂o) =
π∫

0

2π∫
0

dθ̂dϕ̂ sin θ̂

[
dG

dρ̂

]
ρ̂=1

× φ̂
(
1, θ̂, ϕ̂

)
(14)

For the development of the floating random-walk algorithm, we need
to estimate

[
dG(1)

dρ̂

]
ρ̂=1

in Eq. (14). Such an estimate is obtained by

differentiating Eq. (13), and in the zero-centered notation (i.e., ρ̂o = 0)
is given by

[
dG

dρ̂

]
ρ̂=1

=
1
4π

+
R2

4π

1∫
0

π∫
0

2π∫
0

[
dρ̂′dθ̂′dϕ̂′(ρ̂′)2 sin θ̂′ ×D × E

]
(15)

where D and E are given by

D = eH − e−H , H =
1
4π

[
1 − 1

ρ̂′

]
,

E =
1
4π

[
1 − (ρ̂′)2

{1 + (ρ̂′)2 − 2ρ̂′C}3/2

]
.

(16)

Eqs. (15) and (16), in conjunction with Eq. (14), are used to develop
the FRW algorithm for the problem under consideration. In order
to calculate the normalized potential at a point of interest, we start
our random walks at that point and hop to the surface of a sphere of
radius R. The random walks have to be restricted to a small fraction
of λ to maintain the validity of the first-order approximation in the
perturbation expression for the volumetric Green’s function. For every
hop there is a weight factor obtained by sampling the multi-dimensional
integrand of Eq. (14) (with the help of a random-number generator)
according to any pre-determined probability distribution for each of the
variables. As explained in the previous section, a particular random
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walk, consisting of several such random hops, is terminated on the
boundary of the problem domain, where the value of the potential is
known. The contribution from a particular random-walk is obtained by
multiplying the overall weight factor (which is obtained by multiplying
the weight factors of individual hops) with the boundary value, and
an estimate φ̂ of the potential, at the point of origination of the hops
is obtained by averaging over a statistically large number of random
walks and given by

φ̂ =
1
N

N∑
n=1

φ̂n. (17)

In order to achieve convergence of this algorithm, for ρ′ ≤ 0.01, the
term D in Eq. (15) is expanded as a polynomial in H and terms beyond
the fourth power in H are dropped.

The error in the result has two components:
1) A deterministic error arising from the truncation of the iterative

perturbation based Green’s function in Eq. (13), which can be
controlled by controlling the radius of the hop.

2) A statistical 1 − σ error σT given by [17]

σT =
σE√
N

, (18)

where σE is the standard deviation of the estimates from different
random-walks and N is the number of random-walks. As a result,
the statistical error can be controlled by controlling the number of
random-walks.

We have chosen two benchmark problems. The first problem
(Fig. 2) is characterized by angular symmetry, where a spherical
electrode 0.5λ in radius is surrounded by another spherical electrode of
radius 1.5λ. In the second problem (Fig. 3), no such angular symmetry
exists and a spherical electrode λ in diameter is surrounded by a box
of dimensions 3λ×2λ×2λ. The boundary conditions imposed in both
benchmark problems are such that the normalized potential is unity
on the inner electrode and zero on the outer electrode.

The random-walk algorithms were coded in C and run on a
Silicon Graphics, Inc. workstation. The finite-difference solver used
for validation was written in Fortran and run on the same computing
platform. In this work, 20000 random walks were performed per
solution point, and the radii of the hops were restricted to two percent
of λ to maintain the validity of the first-order approximation to the
volumetric Green’s function. For the finite-difference solution of the
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Figure 2. Solution domain enclosed between two concentric spheres
maintained at fixed potentials. Half of outer sphere cut away to reveal
inner sphere.
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Figure 3. Solution domain enclosed in the space between a sphere
and a rectangular parallelepiped maintained at fixed potentials. Half
of rectangular outer domain cut away to reveal inner sphere.
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first problem, the angular symmetry of the problem was exploited
and the finite-difference solution was performed only in the radial
dimension, which was discretized into 101 points. For the second
problem, the finite-difference calculations were carried out over a
51 × 51 × 51 grid distributed over the positive octant of the problem
geometry (Fig. 4).
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Figure 4. Finite-difference solution for Problem 2. First octant
shown.

Table 1 tabulates the statistical error and the mean absolute
discrepancy between the random-walk and finite-difference based
results for each of the benchmark problems. Solution profiles for the
two benchmark problems are plotted in Fig. 5 and Fig. 6, respectively.
There is excellent agreement between the random-walk solutions and
finite-difference based results. It can also be observed that the absolute
discrepancies are around three times larger than the statistical errors.
This can be attributed to the truncation of the perturbation-based
Green’s function in Eq. (13), and also to the truncation errors in the
finite-difference based approach.

For a time comparison, both the FRW and finite-difference
algorithm was run for Problem 2 on a 1-processor SGI workstation
(Specifications: 400 MHz IP30 MIPS R12000 processor, 4 GB RAM).
The time required for the finite-difference algorithm was 52 minutes,
15 seconds, whereas the time required for the FRW algorithm was
14 minutes, 10 seconds. Of course, the finite-difference algorithm
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for Problem 1.

x,y
0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

y = 0, z =0; finite diffe rence
x = 0, z = 0; finite difference
y = 0, z = 0; random walk
x = 0, z = 0; random walk

φ

Figure 6. Potential plotted against position in normalized coordinates
for Problem 2.



248 Chatterjee and Poggie

Table 1. Statistical error and mean absolute discrepancy between
random-walk and finite-difference based results.

Benchmark Problems Mean Absolute 
Discrepancy 

Statistical Error 

Problem 1 

Problem 2 (along the 
centerline positive -axis) 

Problem 2 (along the 
centerline positive -axis) 

1.9   -3

2.8   -3

2.5   -3

e

ee

e

e e
x

y

6.0   -3

7.4   -3

7.9   -3

produced the solution at 132651 points, while the FRW algorithm
produced the solution at 22 points. This confirms the well-known fact
that stochastic solution methods are superior when the requirement is
to know the solution at a relatively few points on the problem domain.

Further, FRW algorithms have a strong advantage on geometri-
cally complicated domains in which a dense finite difference mesh must
be generated in order to produce an accurate solution. For example,
in Problem 2, several techniques were used to reduce the size of the
finite difference mesh: symmetry was exploited and grid clustering was
employed near the surface of the sphere and near the corners in order
to adequately resolve the large potential gradients in those locations.
For extremely complicated problems, as in IC interconnects, finite dif-
ference or finite element methods on fully-resolved meshes become in-
tractable, and random walk methods have significant advantages.

The FRW algorithm for Problem 1 was parallelized. Two levels of
parallelism are inherent in an FRW algorithm. First, the solutions for
different points in the domain (different origins for the random walks)
are independent of each other. Second, for a given point of origin,
each random walk is independent, and inter-processor communication
is required only to sum up the contributions of the walks. For
this initial parallel implementation, the test points in the domain
were handled serially. The walks were distributed in groups across
computer processors, with communication and a reduction operation
at the completion of the walks. As mentioned previously, the code
was written in C, and the serial version of the code was converted
to parallel using the Message Passing Interface (MPI) library. The
elegance and inherent parallelism of the FRW algorithm is displayed
in the fact that the serial and parallel versions of the code differ
by only four function calls, three of which are merely initialization
routines. The inter-processor communication is handled by one call
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to “MPI Reduce,” which sums the contributions from each walk. The
parallel computations were run on a COMPAQ SC-40 machine, based
on an 833 MHz EV 6.8 chip. This computer has a shared/distributed
memory system with 4 processors per shared-memory node. The
results of this parallelization are tabulated in Table 2 and Fig. 7. We
have used as many as 32 processors and an almost linear increase in
computational speed is observed with the increase in the number of
processors.

Table 2. Parallelization results of the FRW algorithm for NPB
equation for Problem 1.

Number of processors Random-
walks/processor/point 

Total Time required to 
calculate solution at 11 

points (seconds) 
1 334.60 
2  168.58 
4  85.86 
8  44.71 
16  23.20 
32  13.01 
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Figure 7. Efficiency of parallelization of the FRW algorithm for
Problem 1.
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4. CONCLUSION

A new FRW algorithm has been developed for the solution of
the NPB equation in three dimensions. Due to the absence of
analytical expressions for the volumetric Green’s function subject
to homogeneous boundary conditions, an approximate expression
has been calculated with the help of a novel use of perturbation
theory. Excellent agreement was found between the results of random-
walk calculations and finite-difference based results. This method
has the advantages of being highly parallelizable and requiring no
discretization of the problem domain. The approach is general, and
can be applied to the numerical solution of other important nonlinear
equations.

Our work in the immediate future will investigate the benefits
of retaining higher-order perturbation terms in the volumetric Greens
function expression and the extension of this algorithm to Neumann
and mixed boundary condition problems. The ultimate objective
of this research is to develop FRW algorithms for the solution of
plasma flow equations and address the efficient implementation of the
algorithms on parallel processor computer platforms.
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