Vol. 56
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2005-08-23
On the Problem with Intermodal Dispersion When Using Multiconductor Transmission Lines as Distributed Sensors
By
Progress In Electromagnetics Research, Vol. 56, 129-150, 2006
Abstract
The inverse problem of using an unshielded multiconductor transmission line (MTL) as an distributed sensor is considered. The MTL is analyzed by means of the quasi-TEM mode theory and a propagator formalism. In the inverse problem, the focus is on the problem with intermodal dispersion, due to the possibility of more than one propagating mode. Reconstruction results, from both measured and simulated reflection data, are presented for a three conductor MTL that has been used for diagnosing soil and snow. Both the case when one mode propagates, and the case when two modes propagate are considered. For the latter case it is demonstrated that intermodal dispersion deteriorates the resolution in the reconstruction, due to corruption of the high frequency part of the spectrum.
Citation
Martin Norgren, "On the Problem with Intermodal Dispersion When Using Multiconductor Transmission Lines as Distributed Sensors," Progress In Electromagnetics Research, Vol. 56, 129-150, 2006.
doi:10.2528/PIER05042501
References

1. Hübner, C., "Entwicklung hochfrequenter Meßverfahren zur Boden-und Schneefeuchtebestimmung," Ph.D. thesis, 1999.

2. Schlaeger, S., "Inversion von TDR-Messungen zur Rekonstruktion rumlich verteilter bodenphysikalischer parameter," Institutes fur Bodenmechanik und Felsmechanik der Universitat Fridericiana in Karlsruhe, 2002.

3. Lundstedt, J. and S. Ström, "Simultaneous reconstruction of two parameters from the transient response of a nonuniform LCRG transmission line," J. Electro. Waves Applic., Vol. 10, No. 1, 19-50, 1996.

4. Frangos, P. V. and D. L. Jaggard, "Inverse scattering: Solution of coupled Gel'fand-Levitan-Marchenko integral equations using succesive kernel approximations," IEEE Trans. Antennas Propagat., Vol. AP-43, No. 6, 547-552, 1995.
doi:10.1109/8.387169

5. Lindell, I. V., "On the quasi-TEM modes in inhomogeneous multiconductor transmission lines," IEEE Trans. Microwave Theory Tech., Vol. MTT-29, No. 8, 812-817, 1981.
doi:10.1109/TMTT.1981.1130452

6. Marx, K. D., "Propagation modes, equivalent circuits, and characteristic terminations for multiconductor transmission lines with inhomogeneous dielectrics," IEEE Trans. Microwave Theory Tech., Vol. MTT-21, No. 7, 450-457, 1973.
doi:10.1109/TMTT.1973.1128032

7. Paul, C. R., "Useful matrix chain parameter identities for the analysis of multiconductor transmission lines," IEEE Trans. Microwave Theory Tech., Vol. MTT-23, No. 9, 756-760, 1975.
doi:10.1109/TMTT.1975.1128669

8. Collin, R. E., Foundations for Microwave Engineering, second ed., 1992.

9. Afsar, M. N., Y. Wang, and A. Moonshiram, "Measurement of transmittance and permittivity of dielectric material using dispersive fourier transform spectroscopy," Microwave and Optical Technology Letters, Vol. 38, No. 7, 27-30, 2003.
doi:10.1002/mop.10961

10. Dorf, R. C. (ed.), The Electrical Engineering Handbook, CRC Press, 1993.

11. Norgren, M. and He S., "An optimization approach to the frequency-domain inverse problem for a nonuniform LCRG transmission line," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 8, 1503-1507, 1996.
doi:10.1109/22.536038