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Abstract—The inverse problem of using an unshielded multiconduc-
tor transmission line (MTL) as an distributed sensor is considered.
The MTL is analyzed by means of the quasi-TEM mode theory and a
propagator formalism. In the inverse problem, the focus is on the prob-
lem with intermodal dispersion, due to the possibility of more than one
propagating mode. Reconstruction results, from both measured and
simulated reflection data, are presented for a three conductor MTL that
has been used for diagnosing soil and snow. Both the case when one
mode propagates, and the case when two modes propagate are consid-
ered. For the latter case it is demonstrated that intermodal dispersion
deteriorates the resolution in the reconstruction, due to corruption of
the high frequency part of the spectrum.

1. INTRODUCTION

The inverse problem of parameter reconstruction on nonuniform trans-
mission lines is of importance in various sensor applications. For ex-
ample, bulk media can be diagnosed using the reflection/transmission
data from submerged unshielded transmission lines, which have been
designed so that their propagation characteristics are strongly sensitive
to the properties of the surrounding media. In [1, 2] a multi-conductor
transmission line (MTL) in the form of a flat three conductor band-
cable has been used to characterize the properties of soil or snow. From
measured reflection data the shunt-capacitance can be reconstructed
as a function of the position along the cable, whereby one can infer
information about e.g., water content and density of the medium.

There are several factors which determine the feasibility and
quality of the reconstruction. Such factors are e.g., uncertainties
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in the parameters which are considered as known. For example,
when diagnosing dielectric media, the series inductance and the
series resistance of the cable must be known with good accuracy.
Another limiting factor is the smallest possible resolution length, which
is roughly half of the wavelength corresponding to the maximum
frequency that can be used. Normally, transmission lines operate in
the quasi-TEM mode regime, which ranges from DC up to frequencies
where the wavelengths starts to be comparable with the cross-sectional
dimensions of the line. For unshielded MTL:s the usable frequency
range may be reduced further, due to radiation losses, especially if the
MTL is long in terms of wavelengths or badly matched at the load end.

Reconstructing the parameters of a nonuniform transmission line
is a formidable task, see e.g., [3, 4], and to the best knowledge of
the author the reconstruction algorithms that have been developed so
far are all restricted to single mode (scalar) transmission line models.
However, an MTL with N + 1 conductors supports N quasi-TEM
modes, which in general propagate with different velocities. Hence,
a pulse built up of several modes will suffer from intermodal dispersion
as it propagates along the MTL. In the construction of devices utilizing
MTL:s, intermodal dispersion can be suppressed by designing the feed,
load, and junctions so that only one mode exists in each section of the
MTL. In such situations, a single mode reconstruction algorithm can
be used. For example, in [1, 2] the reconstruction algorithms are based
on that only the even mode propagates along the three conductor cable.

However, when submerged into an unknown medium there is
no guarantee that only one mode will be excited on the MTL.
When surrounded by e.g., a homogeneous medium, a three conductor
symmetric band-cable supports one even mode and one odd mode, but
if the surrounding medium is heterogeneous and asymmetric over the
width of the cable (see the right portion in Figure 1) hybrid modes
(which are neither even nor odd) will instead propagate. Thus, in the
sensor application the modes are in general not known a priori, and
therefore one cannot eliminate undesired modes by matching. Due
to the intermodal dispersion, one can expect that undesired modes
will degrade the quality of a reconstruction based on a single mode
algorithm. In the present paper, we examine critically how intermodal
dispersion influences the quality of the reconstruction. As a suitable
object, we consider the band-cable used in [1, 2], on which we have
performed measurement to verify the theoretical results.

The paper is organized as follows: In Section 2, we recapture the
basic properties of the quasi-TEM modes and derive the scattering
parameters and propagators that are used for the analysis of the
band-cable. In Section 3, we describe the measurement setup and
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calculate the parameters of the band-cable. In Section 4, we present
reconstruction results for symmetric MTL:s, with only a single mode
propagating, and for asymmetric MTL:s, suffering from intermodal
dispersion because of two propagating modes. Section 5 contains the
conclusions.

Snow

Air
Snow

Figure 1. (left) Band-cable and surrounding medium realizing a
symmetric MTL, supporting an even and an odd mode. (right)
Band-cable and surrounding medium realizing an asymmetric MTL,
supporting two hybrid modes.

2. THE QUASI-TEM MODES

For details about the quasi-TEM mode theory, we refer to [5–7]. Since
we in this study only consider MTL:s with small losses, we initially
restrict the analysis to the lossless case. The losses are estimated in
Section 3.1.2.

Consider an MTL with N+1 conductors. One conductor is chosen
as the reference, assigned zero-valued electric and magnetic potentials.
For the cable considered in the experiment, the center conductor is
the reference; see figure 1. All properties of the quasi-TEM modes can
be derived from two N × N -matrices L and C: the inductance and
capacitance (per unit length) matrices. The n:th mode is described by
its wave number βn and two vectors, un and in, whose components are
the voltages and currents on the conductors. The wave number and
the voltage and current vectors follow from the eigenvalue equations[

(LC)1/2 − βn

ω
I
]

un = 0 (1)[
(CL)1/2 − βn

ω
I
]

in = 0 (2)

where I is the identity matrix. The matrix square roots (LC)1/2 and
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(CL)1/2 are transposes of each other, and thus share the same set of
eigenvalues, {βn}N

n=1, but the sets of eigenvectors {un}N
n=1 and {in}N

n=1
are different in general. For all modes, the voltage and current vectors
are related through the relations

un = Zin, in = Y un (3)

where the impedance matrix Z and its inverse Y are

Z = (LC)1/2 C−1, Y = (CL)1/2 L−1 (4)

The quasi-TEM modes can be shown to be orthogonal in the power
sense, and the modal voltage and current vectors are assumed to have
been orthonormalized, so that

u�
min = u�

mY un = i�mZin = δmn (5)

Let Û and Î be matrices whose columns are the normalized voltage
and current eigenvectors, respectively. Thus, we have

Û = ZÎ, Î = Y Û (6)

Û
�
Î = Î

�
Û = I (7)

The total voltages and currents, propagating in both directions along
the line, are

U(x) =
N∑

n=1

un

(
a+

n e−jβnx + a−n e+jβnx
)

(8)

I(x) =
N∑

n=1

in

(
a+

n e−jβnx − a−n e+jβnx
)

(9)

where the coefficients a±n are determined from the excitation and
loading conditions. Introducing the x-dependent coefficient vectors

a±(x) =




a±1 e∓jβ1x

...
a±Ne∓jβNx


 (10)

the voltage and current vectors can be written compactly as

U(x) = Û
(
a+(x) + a−(x)

)
(11)

I(x) = Î
(
a+(x) − a−(x)

)
(12)
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Using (7), the coefficient vectors are obtained from the voltage and the
current as

a+(x) =
1
2

(
Î
�
U (x) + Û

�
I (x)

)
(13)

a−(x) =
1
2

(
Î
�
U (x) − Û

�
I (x)

)
(14)

2.1. Scattering Parameters

Consider two N -conductor transmission lines, which are connected
with each other in the cross-sectional plane x = x0. Let region 1
be in x < x0 and region 2 in x > x0.

The coupling between the modes can be described by scattering
matrices, defined from the relations[

a−
1 (x0)

a+
2 (x0)

]
=

[
S11 S12

S21 S22

] [
a+

1 (x0)
a−

2 (x0)

]
(15)

Using (11), (12) and the conditions U1

(
x−0

)
= U2

(
x+

0

)
, I1

(
x−0

)
=

I2

(
x+

0

)
for the voltage and the current, the scattering matrices become

S11 =
(
Û

�
2 Î1 + Î

�
2 Û1

)−1 (
Û

�
2 Î1 − Î

�
2 Û1

)
(16)

S12 = 2
(
Û

�
2 Î1 + Î

�
2 Û1

)−1
(17)

S21 = 2
(
Û

�
1 Î2 + Î

�
1 Û2

)−1
(18)

S22 =
(
Û

�
1 Î2 + Î

�
1 Û2

)−1 (
Û

�
1 Î2 − Î

�
1 Û2

)
(19)

It can be shown that the total scattering matrix is symmetric, i.e.

S11 = S�
11, S22 = S�

22, S21 = S�
12 (20)

In the above derivation we have not regarded the mismatch between
the modal field-patterns at the different sides of the plane x = x0. To
properly satisfy the field boundary conditions higher order evanescent
modes must be added, which can approximately be modelled as lumped
elements between the conductors at x0. In this study, the conductors
have no geometrical discontinuities along the MTL, wherefore we
assume that higher modes may be neglected in the frequency range
where the quasi-TEM theory is adequate.



134 Norgren

2.2. Propagator for the Voltage and the Current

If the voltage and current are known at the location x along a uniform
line, the voltage and current at the location x+∆x can be determined
easily by means of a propagator:[

U(x + ∆x)

I(x + ∆x)

]
= P (∆x)

[
U(x)

I(x)

]
(21)

To determine the propagator matrix P (∆x), we first note that the
phase-shifts in the mode coefficients are given as

a±(x + ∆x) = D±(∆x)a±(x) (22)

where the diagonal matrices D±(∆x) are

D±(∆x) = diag
{

e∓jβ1∆x, · · · , e∓jβN∆x
}

(23)

Using (13) and (14), (22), (11) and (12), it follows that

P (∆x) =


 Û C(∆x) Î

� −jÛ S(∆x) Û
�

−jÎ S(∆x) Î
�

Î C(∆x) Û
�


 (24)

where

C(∆x) = diag {cos(β1∆x) , · · · , cos(βN∆x)}
S(∆x) = diag {sin(β1∆x) , · · · , sin(βN∆x)}

The inverse of the propagator matrix (the back-propagator) becomes

[P (∆x)]−1 = P (−∆x) =


 Û C(∆x) Î

�
jÛ S(∆x) Û

�

jÎ S(∆x) Î
�

Î C(∆x) Û
�


 (25)

For a line consisting of several different sections, the continuity of
the voltage and the current makes it straightforward to cascade
the individual propagators into a total propagator. For a line
with M sections located between x0, x1, x2, . . . , xM−1, xM , the total
propagator from x0 to xM becomes

P tot = P M (xM − xM−1) · · ·P 2(x2 − x1) P 1(x1 − x0) (26)
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3. THE MEASUREMENT SETUP AND THE
BAND-CABLE

Zload

Zload

Z0 Cstray

conductor 1

conductor 2

central conductor (reference)

Figure 2. Schematic picture of the measurement setup.

The measurement setup, given schematically in Figure 2, was
designed so that only the even mode was launched when the MTL
was symmetric. The length of the band-cable was 2.00 m. The cable
was terminated with two lumped resistors Rload = 390 Ω, between
the central conductor to each of the outer conductors; see Figure 3(a).
Near the load end we can expect an increased pile up of charges on the
conductors, which yields an extra amount of capacitance near the load.
These capacitances has been estimated to be Cload ≈ 0.23 pF for each
of the conductors. The load impedances thus become approximately

Zload =
Rload

1 + jωRloadCload
(27)

Hence, the load impedance seen by the even mode becomes Zload/2,
which was the value that was used in the reconstructions algorithm.

The measurements were performed with an HP8510C/HP8517A
network analyzer system. The feeding coaxial cable from the network
analyzer has a characteristic impedance Z0 = Y −1

0 = 50 Ω. At the
feeding end the outer conductors of the band-cable are attached to the
screen of the coaxial connector via two wires which are approximately
2 cm in length; see Figure 3(b). At the feeding point, these wires
yield an increased amount of shunt capacitance, which is modelled as
a lumped capacitor with the estimated value Cstray ≈ 1.45 pF.

(a) The load resistors. (b) The coaxial connector.

Figure 3. The termination and feeding of the band-cable.
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To find the reflection coefficient, we proceed as follows: the
relation between the voltages and currents at the load end becomes
U load = Z loadI load, where the impedance matrix

Z load =
[
Zload 0

0 Zload

]
(28)

Let B = P−1
tot be the back-propagator from the load-end to the feeding-

end Splitting B into 2 × 2 sub-matrices, we obtain[
U in

I in

]
=

[
BUU BUI

BIU BII

] [
Z loadI load

I load

]
(29)

Eliminating I load, the current vector at the feeding end becomes

I in = [BIUZ load + BII ] [BUUZ load + BUI ]
−1 U in (30)

where in our case

U in = Uin

[
1
1

]
, I in =

[
Iin,1

Iin,2

]

The scalar input admittance seen from the supplying line then becomes

Yin =
Iin,1 + Iin,2

Uin
+ jωCstray (31)

wherefrom the reflection coefficient becomes

Γ =
Y0 − Yin

Y0 + Yin
(32)

3.1. Calculation of the Parameters of the Flat Band-Cable

A three-conductor symmetric cable supports two quasi-TEM modes,
the odd mode and the even mode, which each can be described by
scalar parameters L,C,R,G. For the present cable, the insulation is
made of polyethylene with a relative permittivity about 2.25. Since
the losses in the polyethylene are very small, the shunt conductance is
neglected completely, i.e. G = 0.

The series resistance R is due to the finite conductivity of the
copper conductors. Since the conductivity σ = 5.7 · 107 S/m is large,
we expect small losses, i.e. R � ωL. In such a case, one can first
compute the parameters L and C from a lossless model of the cable;
R is then calculated by a perturbation technique.
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3.1.1. The Series Inductance and the Shunt Capacitance

For a flat-band cable surrounded by air, calculations using a
commercial numerical software gives the following inductance and
capacitance matrices:

L =
[

1.17 0.44
0.44 1.17

]
µH/m, C =

[
12.6 −4.5
−4.5 12.6

]
pF/m (33)

wherefrom the velocities and normalized voltage- and current-vectors
for the two modes become

v1 = 2.83 · 108 m/s, u1 =
[
−10.2

10.2

]
Ω1/2, i1 =

[
−0.0492

0.0492

]
Ω−1/2

v2 = 2.75 · 108 m/s, u2 =
[

14.9
14.9

]
Ω1/2, i2 =

[
0.0335
0.0335

]
Ω−1/2

Mode 1 is an odd mode and mode 2 is an even mode. From the
proportionality between u1 and i1, and u2 and i2, respectively, the
modes can be described by scalar voltages, currents and characteristic
impedances. The voltages and currents are defined as

Uodd = [u1]2 − [u1]1 , Iodd = [i1]2 = − [i1]1
Ueven = [u2]1 = [u2]2 , Ieven = [i1]1 + [i1]2

whereby the characteristic impedances become

Zodd = 414 Ω, Zeven = 223 Ω

From the mode velocities and the relations L = Z/v,C = 1/ (Zv), the
series inductances and shunt capacitances for the modes become

Lodd = 1.46 µH/m, Codd = 8.5 pF/m
Leven = 810 nH/m, Ceven = 16.3 pF/m

3.1.2. The Series Resistance

With G = 0, the characteristic impedance and the propagation factor
become [8]

Z =

√
jωL + R

jωC
(34)

γ = α + jβ =
√

(jωL + R) jωC (35)
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With R � ωL, R usually can be neglected in the expression (34) for
the characteristic impedance. Hence, we set Z =

√
L/C, which is the

same as for a lossless line. However, in (35) the attenuation factor α
is due to R which can therefore not be neglected. Using R � ωL, one
obtains approximately

α ≈ R

2Z
, β ≈ ω

√
LC. (36)

The voltage, current and power propagating in the +x-direction
can be written

U(x) = ZI0e−γx, I(x) = I0e−γx, (37)

P (x) = Re {U(x) I∗(x)} = Z |I0|2 e−2αx. (38)

The power per unit length delivered to the conductors thus becomes

Pl = −dP (x)
dx

= 2αZ |I0|2 e−2αx = R |I0|2 e−2αx = R |I|2 (39)

The copper conductors have the width w = 5 mm and the thickness
t = 0.15 mm. For very low frequencies, when the penetration depth
δ =

√
2/ (ωσµ0) satisfies δ � t, the current becomes nearly uniformly

distributed over the conductor cross-sections, which yields

Pl =
1

σwt

N∑
i=0

|Ii|2 (40)

(subscript 0 refers to the reference conductor). For the even mode, we
have |Il| = |Ir| = |I| /2, |Ic| = |I|, whilst for the odd mode we have
|Il| = |Ir| = |I| , Ic = 0, which yields

RDC
even =

3
2σwt

≈ 35 mΩ/m, RDC
odd =

2
σwt

≈ 47 mΩ/m (41)

As the frequency increases the current becomes more and more
concentrated towards the surfaces of the conductors. For intermediate
frequencies, when δ ≈ t, the analysis becomes difficult. However,
for higher frequencies, when δ � t, the power loss can be computed
by means of a surface resistance model. With the surface resistance
Rs = 1/ (σδ) [8], the power loss per unit length becomes

Pl = Rs

N∑
i=0

∮
Ci

|K|2 dl, (42)



Progress In Electromagnetics Research, PIER 56, 2006 139

where K is the surface current density, and the integral is taken around
the circumferences of the conductors. The surface current density
is determined from the same magnetostatic problem that was solved
numerically when determining the inductance matrix. Let n̂ denote
the inward unit normal at the surfaces of the conductor. From the
magnetic field B and its vector potential A = Ax̂, one obtains

K = − 1
µ0

n̂ × B = − 1
µ0

n̂ × (∇× A)

= − 1
µ0

n̂ × (∇A× x̂) =
1
µ0

(n̂ · ∇A) x̂ =
x̂

µ0
· ∂A
∂n

(43)

The expression (42) for the power loss per unit length in the conductors
thus becomes

Pl =
Rs

µ2
0

N∑
i=0

∮
Ci

(
∂A

∂n

)2

dl, (44)

whilst the total current flowing in each of the conductors becomes

Ii =
∮
Ci

K · x̂dl =
1
µ0

∮
Ci

∂A

∂n
dl, i = 0, . . . N. (45)

Identifying the total current in the mode and using (44), the series
resistance as defined by (39) can be written in the form

R = ξRs, (46)

where the factor ξ has the following values for the even and odd mode,
respectively:

ξeven ≈ 214 m−1, ξodd ≈ 288 m−1 (47)

The corresponding series resistances as functions of the frequency are
given in Figure 4. In Figure 5, the attenuation e−αl due to R is given
as functions of the frequency for a 2 m cable and a 20 m cable. For the
short cable the attenuation is small and thus hardly detectable in an
experiment. For the longer cable, on the other hand, one sees that the
series resistance has a non-negligible contribution to the attenuation.

To check the results in (47), we compare with an approximate
analytical result given by Collin [8]: for an isolated single conductor of
width w and thickness t one has

ξCollin =
π + ln (4πw/t)

π2w
, t/w < 0.05 (48)
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Figure 4. The series resistance of the band-cable. Even mode - solid
line; odd mode - dashed line.
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Figure 5. The attenuation due to the series resistance, for cables with
lengths 2 m and 20 m respectively. Even mode - solid lines; odd mode
- dashed lines.

In our case t/w = 0.03, which yields ξCollin ≈ 186 m−1. Neglecting the
interaction between the conductors, one then obtains

ξeven ≈ 3
2
ξCollin ≈ 279 m−1, ξodd ≈ 2ξCollin ≈ 372 m−1

The differences against (47) may partly be explained by convergence
problems in the numerical calculations. Since the conductors are thin,
the singular behavior of the fields in the vicinity of the edges yields
a poor numerical convergence, even though local mesh-refinement has
been used. Nevertheless, the numerical and analytical results indicate
the order of the magnitude of the series resistance.
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3.2. Measured Parameters

In [1], the following measured values were reported for the reactive
parameters of the even mode:

Lmeas
even = 756 nH/m, Cmeas

even = 17.6 pF/m

In our own calibration measurements, we obtained values very close to
the above ones. Some of the differences from the numerically obtained
values in Section 3.1.1 may be attributed to the afore-mentioned
convergence problem in the numerical calculations.

Since the maximum length of the cables we made measurements
upon was 2 m, we conclude from Figure 5 that it is difficult to determine
the series resistance R from these measurements. Also, this kind of
open cable radiates, whereby the radiation losses (which have not been
included in the model) may dominate over the losses due to R.

4. RECONSTRUCTIONS FROM MEASURED AND
SIMULATED REFLECTION DATA

In the experiments, we constructed transmission lines with different
capacitance matrices by sandwiching the flat band-cable between
blocks of either Plexiglas or polyethylene. Consulting [9] and [10]
respectively, the relative permittivities have the nominal values given
in Table 1. These materials have negligible losses, wherefore we keep
the value G = 0 for the shunt conductance.

Table 1. Nominal values of the relative permittivities for the dielectric
media around the cable.

Plexiglas Polyethylene

εr 2.6 2.35

4.1. Symmetric Lines with the Even Mode Only

In the first experiment, a 775 mm section of the cable was sandwiched
between two blocks of Plexiglas; see Figure 6. The thickness of the
Plexiglas was 24 mm. The order and lengths of the sections were

| air 500 mm | Plexiglas 775 mm | air 725 mm |
In the Plexiglas section, the numerically obtained value of the shunt
capacitance for the even mode is Cplexi

even = 33.4 pF/m.
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Figure 6. The flat band-cable sandwiched between two blocks of
Plexiglas.

For the reconstructions, we used the conjugate gradient based
optimization method described in e.g., [11]. When reconstructing from
measured data we used the value L = 756 µH/m [1] for the series
inductance, and when reconstructing from simulated data we used the
calculated value L = 810µH/m. Note that in this case the single-
mode reconstruction algorithm is applicable, since (in the ideal case)
the excitation-, termination- and scattering-conditions guarantee that
only the even mode will exist along the line.

In all reconstructions we used measurement data and simulation
data from 633 evenly spaced frequencies from 45 MHz to 800 MHz. The
upper limit of the frequency range is chosen in order to avoid problems
with radiation from the cable and the lower limit is dictated by the
networker analyser system. A procedure which in practice has proved
to reduce the problem with local minima in the optimization method
is to start with low-frequency data only and reconstruct essentially the
mean values of the parameters. Then, one gradually incorporate data
from higher frequencies to reconstruct the fine structure. For the sake
of comparison, all figures with reconstruction results are given in the
same scale.

The results in this first case are depicted in Figure 7. From
the prior knowledge that the permittivity of the surrounding media
is piecewise constant, we see that the reconstructions are successful.
The boundaries of the blocks of Plexiglas are located correctly and
elsewhere the profiles tend to fluctuate around piecewise constant
values. The reconstruction from simulated data practically recovers
the calculated values of the even mode capacitances.

In the second experiment, one section of the cable was sandwiched
between the same two blocks of Plexiglas which were used in the first
experiment. Another section of the cable was sandwiched between two
blocks of polyethylene. The order and lengths of the sections were



Progress In Electromagnetics Research, PIER 56, 2006 143

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
15

20

25

30

35

40

x/m

C
/(

pF
/m

)

Figure 7. Reconstruction of shunt capacitance along a cable
sandwiched between Plexiglas in 0.500 m < x < 1.275 m: from
measured data (solid line); from simulated data (dashed line).

| air 250 mm | Plexiglas 775 mm | air 275 mm | polyethylene 358 mm |
air 342 mm |

In the polyethylene section, the numerically obtained value of the shunt
capacitance for the even mode is Cpoly

even = 30.8 pF/m. The results of
the reconstructions are depicted in Figure 8.
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Figure 8. Reconstruction of shunt capacitance along a cable
sandwiched between plexiglass in 0.250 m < x < 1.025 m and
polyethylene in 1.300 m < x < 1.658 m: from measured data (solid
line); from simulated data (dashed line).

4.2. Dispersion Due to Multiple Modes

Before doing the reconstructions using data contaminated from
intermodal dispersion, we make an approximate estimate about the
influence when two modes are present on the cable. The propagation
velocities for the modes are vn = ω/βn. Due to the boundary
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conditions at the feeding end, a launched signal splits into several
modes, which in general propagate with different velocities. Hence, the
dispersion due to multiple modes must be considered. In applications
where the length of the cable is shorter than the wavelength, intermodal
dispersion is not likely to be a problem, but (as can be seen from
the previous reconstructions) the present application requires several
wavelengths along the cable, in order to obtain a good resolution.
Hence, intermodal dispersion sets an upper(lower) limit on the
frequencies(pulse rise-times) which can be used.

Assume two modes which propagate with the velocities v1 and
v2 respectively. Let ∆x denote the desired spatial resolution along
the cable, and define the relative difference between the velocities as
∆v/ 〈v〉, where ∆v = |v1 − v2| and 〈v〉 =

√
v1v2. The required rise-

time (or pulse-width) then approximately becomes

∆t =
∆x

〈v〉 (49)

Let l denote the length of the cable. For pulses belonging to two
different modes, with velocities v1 and v2 respectively, the difference
between the arrival-times after propagation forth and back along the
cable becomes

δt =
∣∣∣∣ 2lv1

− 2l
v2

∣∣∣∣ =
2l∆v

〈v〉2
(50)

Intermodal dispersion should be negligible if δt � ∆t, which yields

∆v

〈v〉 � ∆x

2l
(51)

That is, the relative difference between the velocities certainly must be
much less than the relative resolution, ∆x/l, along the cable.

In a frequency domain formulation, the condition for neglecting
intermodal dispersion is that the difference in the phase-progressions
forth and back along the line satisfies

2l |β1 − β2| = 2l · 2πf
∣∣∣∣ 1
v1

− 1
v2

∣∣∣∣ � π (52)

which yields

∆v

〈v〉 � 〈v〉
4fl

=
〈λ〉 /2

2l
(53)

where 〈λ〉 is the average wavelengths between the modes. Note that
(53) conforms with the time-domain result (51), since 〈λ〉 /2 is the
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required resolution corresponding to ∆x. Expressed as a limitation of
the frequency, (53) becomes

f � 〈v〉2
4l∆v

(54)

4.3. Asymmetric Lines with Two Modes Present

When used for diagnosing snow, airgaps around the cable may
develop due to melting, re-freezing of the snow and vibrations of the
cable. With a vertically oriented cross-section, airgaps may develop
asymmetrically (Figure 9), giving rise to hybrid modes along the cable.

Airgap

Snow

Figure 9. Surrounding medium with an airgap over half of the cable
cross-section.

4.3.1. Region with Airgap over Half of the Cable-Width

We emulated an airgap over half of the cable cross-section by inserting
corrugated carton between the cable and the Plexiglas. In the
numerical calculation the airgap was void. The overall width of the
airgap, over both sides of the cable, was 9 mm.
The MTL studied had the following sections:

| air 500 mm | Plexiglas with partial airgap 775 mm | air 725 mm |
The calculated capacitance matrix for the section with a partial airgap
becomes

C =
[

24.4 −7.7
−7.7 18.5

]
pF/m

The inductance matrix, which is unaffected by dielectric media, is given
in Section 3.1.1. The velocities and normalized voltage- and current-
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vectors for the two modes become

v1 = 2.32 · 108 m/s, u1 =
[

2.1
16.0

]
Ω1/2, i1 =

[
−0.0168

0.0648

]
Ω−1/2

v2 = 2.00 · 108 m/s, u2 =
[

15.2
3.9

]
Ω1/2, i2 =

[
0.0681

−0.0089

]
Ω−1/2

Clearly, these modes are neither even nor odd. Mode 1, has the fields
more concentrated to the airgap region and thereby a greater velocity
than mode 2, for which the fields are more concentrated into the region
where the Plexiglas adheres to the cable. Furthermore, the voltage-
and current-vectors in the respective modes are not proportional, but
related via the impedance matrix

Z =
[

234 93
93 270

]
Ω

With subscript 1 denoting the air-region adjacent to the feeding end
and subscript 2 denoting the Plexiglas-region, the scattering matrices
at x = 500 mm become

S11 =
[
−0.130 0.036
0.036 −0.126

]
, S22 =

[
0.092 −0.007
−0.007 0.164

]
,

S21 = S�
12 =

[
0.748 0.657
−0.649 0.743

]

In S21,S12, one sees that an incident mode splits up in two transmitted
modes with quite equal magnitudes.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
15

20

25

30

35

40

x/m

C
/(

pF
/m

)

Figure 10. Reconstruction of shunt capacitance from measured data
(solid line) and simulated data (dashed line).
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The reconstructions, using the single-mode reconstruction
algorithm, are depicted in Figure 10. Comparing with the
reconstructions from data that is not contaminated from intermodal
dispersion (Figures 7 and 8) we see in Figure 10 that the some of the
steepness has been lost where the discontinuities are located (especially
at the rear end of the Plexiglas section), which is a clear indication
that high-frequency information has been lost due to the intermodal
dispersion.

4.3.2. Region with Plexiglas over Half of the Cable-Width

In the second asymmetric case we consider a cable with two adjacent
sections sandwiched between Plexiglas, but in the first section the cable
is only covered over half of its with; see Figure 11. The MTL we studied
had the following sections:

| air 500 mm | Plexiglas over half the width 351 mm | Plexiglas
424 mm | air 725 mm |

Figure 11. Transition region where the flat band-cable is partly
sandwiched between two blocks of Plexiglas.

The calculated capacitance matrix for the asymmetric section becomes

C =
[

14.0 −5.9
−5.9 22.7

]
pF/m

The velocities and normalized voltage- and current-vectors for the two
modes become

v1 = 2.66 · 108 m/s, u1 =
[

16.8
1.2

]
Ω1/2, i1 =

[
0.0609

−0.0191

]
Ω−1/2

v2 = 2.05 · 108 m/s, u2 =
[

4.8
15.5

]
Ω1/2, i2 =

[
−0.0049

0.0662

]
Ω−1/2
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and the impedance matrix becomes

Z =
[

306 96
96 241

]
Ω

The scattering matrices at the interface between the first air-section
and the section partly covered with Plexiglas are

S11 =
[
−0.080 −0.063
−0.063 −0.098

]
, S22 =

[
0.025 0.007
0.007 0.152

]
,

S21 = S�
12 =

[
0.788 −0.615
0.607 0.800

]

The reconstructions, using the single-mode algorithm, are
depicted in Figure 12. Comparing with Figures 7 and 8 we see also
in this second asymmetric case that some of the expected steepness at
the discontinuities has been lost due to the intermodal dispersion.
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Figure 12. Reconstruction of shunt capacitance from measured data
(solid line) and simulated data (dashed line).

5. DISCUSSION AND CONCLUSIONS

A three-conductor flat band-cable, used for diagnosing purposes in
soil and snow, has been analyzed by means of the quasi-TEM mode
theory. Comparing the reconstructions from measured data with the
ones from simulated data, we conclude that the quasi-TEM mode
theory is appropriate for the analysis of this kind of transmission line.
The results for the transmission line parameters show that the series
resistance must be taken into account when using long cables in sensor
applications.

The reconstructions from both measured and simulated reflection
data show that a high resolution can be obtained if there is only one
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mode that propagates along the MTL, which usually is the case when
the medium surrounding the cable has a symmetric distribution. For
the asymmetric MTL:s, the presence of two modes and the intermodal
dispersion clearly degrades the reconstruction results; the smoothing
of the discontinuous profiles is more pronounced due to the loss of high
frequency information. Hence, the existence of several modes cannot
be overlooked when considering an MTL as a distributed sensor. In
a practical case, one thus needs prior information about the possible
existence of inhomogeneities in the cross-section of the MTL.
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