Vol. 55
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2005-06-25
Microwave Scattering Models for Cylindrical Vegetation Components
By
, Vol. 55, 307-333, 2005
Abstract
This work is intended to investigate the accuracy of modelling simple cylindrical vegetation structures for microwave remote sensing applications. Plane wave scattering by dielectric cylinders of finite length and circular cross section is examined. Cylinders with a radius that varies linearly along the cylinder length — hereafter referred to as tapered cylinders — are also considered. Exact expressions for the scattering cross section do not exist for those objects. Numerical methods can provide accurate results, but they are computationally intensive and therefore less suitable when calculations on a large number of scatterers of different sizes and orientations are necessary. In this paper the scattering cross section of finite cylinders is computed by physical optics methods, which are faster and often employed in microwave vegetation models. Tapered cylinders are modelled by a number of coaxial finite cylinders stacked on top of each other. To check the validity of the results, the problems are also solved numerically by the moment method. For cases often encountered in vegetation studies, the results of the application of the approximate analytical methods are then compared with the corresponding numerical solution. For both constant-radius and tapered cylindrical structures, a good agreement with the numerical solution is found in the region of the main scattering lobe, which is the one of interest when considering complex media such as vegetation canopies. However, the accuracy of the approximate solutions decreases as the angle of the incident wave approaches the end-on angle.
Citation
Paolo de Matthaeis, and Roger Lang, "Microwave Scattering Models for Cylindrical Vegetation Components," , Vol. 55, 307-333, 2005.
doi:10.2528/PIER05040602
References

1. Fung, A. K., Microwave Scattering and Emission Models and Their Applications, 1994., 1994.

2. Ulaby, F. T., K. Sarabandi, K. McDonald, and M. C. Dobson, "Michigan microwave canopy scattering model," International Journal of Remote Sensing, Vol. 11, 1223-1253, 1990.

3. Karam, M. A., A. K. Fung, R. H. Lang, and N. S. Chauhan, "A microwave scattering model for layered vegetation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, 767-784, 1992.
doi:10.1109/36.158872

4. Lang, R. H., S. C. Chauhan, K. J. Ranson, and O. Kilik, "Modeling P-band SAR returns from a red pine stand," Remote Sensing of the Environment, Vol. 47, 132-141, 1994.
doi:10.1016/0034-4257(94)90150-3

5. Wait, J. R., "Scattering of a plane wave from a right circular dielectric cylinder at oblique incidence," Canadian Journal of Physics, Vol. 33, 189-195, 1955.

6. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, 1970., 1970.

7. Gans, R., Annalen der Physik, Vol. 76, Vol. 76, 1925.

8. Acquista, C., "Light scattering by tenuous particles: a generalization of the Rayleigh-Gans-Rocard approach," Applied Optics, Vol. 15, 2932-2936, 1976.

9. Cohen, L. D., R. D. Haracz, A. Cohen, and C. Acquista, "Scattering of light from arbitrarily oriented finite cylinders," Applied Optics, Vol. 22, 742-748, 1983.

10. Schiffer, R. and O. Thielheim, "Light scattering by dielectric needles and disks," Journal of Applied Physics, Vol. 50, 2476-2483, 1979.
doi:10.1063/1.326257

11. Shepherd, J. W. and A. R. Holt, "The scattering of electromag- netic radiation from finite dielectric circular cylinders," J. Phys. A: Math. Gen., Vol. 16, 651-662, 1983.
doi:10.1088/0305-4470/16/3/024

12. Karam, M. A. and A. K. Fung, "Electromagnetic scattering from a layer of finite-length, randomly oriented dielectric circular cylinders over a rough interface with application to vegetation," International Journal of Remote Sensing, Vol. 9, 1109-1134, 1988.

13. Karam, M. A., A. K. Fung, and Y. M. M. Antar, "Electromagnetic wave scattering from some vegetation samples," IEEE Transac- tions on Geoscience and Remote Sensing, Vol. 26, 799-808, 1988.
doi:10.1109/36.7711

14. Stiles, J. M. and K. Sarabandi, "A scattering model for thin dielectric cylinders of arbitrary cross section and electrical length," IEEE Transactions on Antennas and Propagation, Vol. 44, 260-266, 1996.
doi:10.1109/8.481656

15. Harrington, R. F., Field Computations by Moment Methods, 1968., 1968.

16. Raz, S. and J. A. Lewinsohn, "Scattering and absorption by a thin, finite dielectric cylinder," Applied Physics, Vol. 22, 61-69, 1980.
doi:10.1007/BF00897934

17. Papagiannakis, A. G. and E. E. Keiezis, "Scattering from a dielectric cylinder of finite length," IEEE Transactions on Antennas and Propagation, Vol. 31, 725-731, 1983.
doi:10.1109/TAP.1983.1143140

18. Papagiannakis, A. G., "Application of a point-matching MoM reduced scheme to scattering from finite cylinders," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 1545-1553, 1997.
doi:10.1109/22.622921

19. Mautz, J. R. and R. F. Harrington, "Electromagnetic scattering from a homogeneous material body of revolution," Archiv für Elektronik und Ubertragungstechnik, Vol. 33, 71-80, 1979.

20. Seiker, S. S. and A. Schneider, "Electromagnetic scattering from a dielectric cylinder of finite length," IEEE Transactions on Antennas and Propagation, Vol. 36, 303-307, 1998.
doi:10.1109/8.1109

21. Le Vine, D. M., R. Meneghini, R. H. Lang, and S. S. Seker, "Scattering model from arbitrary oriented dielectric discs in the physical optics regime," Journal of the Optical Society of America, Vol. 73, 1255-1262, 1994.

22. Glisson, A. K. and D. R. Wilton, "Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces," IEEE Transactions on Antennas and Propagation, Vol. 28, 593-603, 1980.
doi:10.1109/TAP.1980.1142390

23. Poggio, A. J. and E. K. Miller, "Integral equation solutions of three-dimensional scattering problems," Computer Techniaues for Electromagnetics, 1973.

24. Chauhan, S. C., R. H. Lang, and K. J. Ranson, "Radar modeling of a boreal forest," IEEE Transactions on Geoscience and Remote Sensing, Vol. 29, 627-638, 1991.
doi:10.1109/36.135825

25. Chauhan, S. C., D. M. Le Vine, and R. H. Lang, "Discrete scatter model for microwave radar and radiometer response to corn: comparison of theory and data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, 416-426, 1994.
doi:10.1109/36.295056

26. Ulaby, F. T. and M. A. El-Rayes, "Microwave dielectric spectrum of vegetation — Part II: Dual dispersion model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 25, 550-557, 1987.