Vol. 55
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2005-06-25
Scattering of Multilayer Concentric Elliptical Cylinders Excited by Single Mode Source
By
, Vol. 55, 209-226, 2005
Abstract
The Electromagnetic (EM) fields of a concentric, mismatched-material, elliptical system are studied when excited by an interior or exterior electric surface current. The interior or exterior surface current is assumed to be proportional to a single, angular Mathieu mode. It is shown that despite the fact that the system is concentric, that a single Mathieu mode surface current excites EM Mathieu-mode fields of all orders. A derivation of the EM fields due a single mode electric surface in an infinite, homogeneous media is given, as well as the matrix formulation from which the EM fields of the mismatched-material, elliptical system may be determined. Validation of numerical results and comparison with other research work is given for both interior and exterior single-mode, current sources. Detailed numerical examples of the EM fields that result for a single-mode, exterior source excitation are given for the first time. Discussion of the EM mode coupling that results by single-mode excitation on a mismatched elliptical system is given.
Citation
Susan Hill, and John Jarem, "Scattering of Multilayer Concentric Elliptical Cylinders Excited by Single Mode Source," , Vol. 55, 209-226, 2005.
doi:10.2528/PIER05040501
References

1. Abramowitz, M., I. StegunHandbook of Mathematical Functions, and Chap. 20, "Mathieu Functions," National Bureau of Standards Applied Mathematics Series 53, 1970.

2. Stratton, J., Electromagnetic Theory, Mcgraw-Hill, 1941.

3. Bowman, J., T. Senior, and P. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes, Chap. 3, "The Elliptic Cylinder," 129-180, 129-180, 1987.

4. Yeh, C., "Backscattering cross section of a dielectric elliptical cylinder," J. Opt. Soc. Amer., Vol. 55, No. 3, 309-314, 1965.

5. Yeh, C., "The diffraction of waves by a penetrable ribbon," J. Math. Phys., Vol. 4, No. 1, 65-71, 1963.
doi:10.1063/1.1703890

6. Ragheb, H. and L. Shafai, "Electromagnetic scattering from a dielectric-coated elliptic cylinder," Can. J. Physics, Vol. 66, 1115-1122, 1988.

7. Sebak, A., "Scattering from dielectric-coated impedance elliptical cylinder," IEEE Trans. on Antennas and Prop., Vol. 48, No. 10, 1574-1580, 2000.
doi:10.1109/8.899674

8. Caorsi, S., M. Pastorino, and M. Raffetto, "Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: Series solution in terms of Mathieu functions," IEEE Trans. on Antennas and Prop., Vol. 45, No. 6, 926-935, 1997.
doi:10.1109/8.585739

9. Caorsi, S. and M. Pastorino, "Scattering by multilayer isore-fractive elliptic cylinders," IEEE Trans. on Antennas and Prop., Vol. 52 No. 1, No. Vol. 52 1, 189-196, 2004.
doi:10.1109/TAP.2003.822417

10. Uslenghi, P., "Exact scattering by isorefractive bodies," IEEE Trans. on Antennas and Prop., Vol. 45, No. 9, 1382-1385, 1997.
doi:10.1109/8.623127

11. Jarem, J., "Rigorous coupled wave analysis of radially and azimuthally-inhomogeneous, elliptical, cylindrical systems," Progress in Electromagnetic Research, Vol. 34, 89-115, 2001.

12. Jarem, J., "Validation and numerical convergence of the Hankel-Bessel and Mathieu rigorous coupled wave analysis algorithms for radially and azimuthally-inhomogeneous, elliptical, cylindrical systems," Progress in Electromagnetic Research, Vol. 36, 153-177, 2002.

13. Balanis, C., Advanced Engineering Mathematics, John Wiley and Sons, 1989.

14. Harrington, R., Field Computations by Moment Methods, MacMillan, 1968.

15. Hill, C. S., "Electromagnetic excitation of dielectric concentric elliptical cylinders," Masters Thesis, 2004.

16. Zhang, S. and J. Jin, "FORTRAN routines for computation of special functions," Programs: MTU12.

17. Jarem, J. and P. Banerjee, "Bioelectromagnetics: A rigorous coupled wave analysis of cylindrical biological tissues," Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, Vol. II, 26-29, 2000.

18. Hamid, A.-K., "Iterative solution to the TM scattering by two infinitely long lossy dielectric elliptic cylinders," J. of Electromagn. Waves and Appl., Vol. 18, No. 4, 529-546, 2004.
doi:10.1163/156939304774113115